| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | frgrncvvdeq.nx | ⊢ 𝐷  =  ( 𝐺  NeighbVtx  𝑋 ) | 
						
							| 4 |  | frgrncvvdeq.ny | ⊢ 𝑁  =  ( 𝐺  NeighbVtx  𝑌 ) | 
						
							| 5 |  | frgrncvvdeq.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | frgrncvvdeq.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | frgrncvvdeq.ne | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 8 |  | frgrncvvdeq.xy | ⊢ ( 𝜑  →  𝑌  ∉  𝐷 ) | 
						
							| 9 |  | frgrncvvdeq.f | ⊢ ( 𝜑  →  𝐺  ∈   FriendGraph  ) | 
						
							| 10 |  | frgrncvvdeq.a | ⊢ 𝐴  =  ( 𝑥  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) | 
						
							| 12 |  | riotacl | ⊢ ( ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸  →  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  ∈  𝑁 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  ∈  𝑁 ) | 
						
							| 14 | 13 10 | fmptd | ⊢ ( 𝜑  →  𝐴 : 𝐷 ⟶ 𝑁 ) |