| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | frgrncvvdeq.nx |  |-  D = ( G NeighbVtx X ) | 
						
							| 4 |  | frgrncvvdeq.ny |  |-  N = ( G NeighbVtx Y ) | 
						
							| 5 |  | frgrncvvdeq.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | frgrncvvdeq.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | frgrncvvdeq.ne |  |-  ( ph -> X =/= Y ) | 
						
							| 8 |  | frgrncvvdeq.xy |  |-  ( ph -> Y e/ D ) | 
						
							| 9 |  | frgrncvvdeq.f |  |-  ( ph -> G e. FriendGraph ) | 
						
							| 10 |  | frgrncvvdeq.a |  |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ x e. D ) -> x e. D ) | 
						
							| 12 |  | riotaex |  |-  ( iota_ y e. N { x , y } e. E ) e. _V | 
						
							| 13 | 10 | fvmpt2 |  |-  ( ( x e. D /\ ( iota_ y e. N { x , y } e. E ) e. _V ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( ( ph /\ x e. D ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 15 | 14 | sneqd |  |-  ( ( ph /\ x e. D ) -> { ( A ` x ) } = { ( iota_ y e. N { x , y } e. E ) } ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem3 |  |-  ( ( ph /\ x e. D ) -> { ( iota_ y e. N { x , y } e. E ) } = ( ( G NeighbVtx x ) i^i N ) ) | 
						
							| 17 | 15 16 | eqtrd |  |-  ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) ) |