| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
| 2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
| 3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
| 4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
| 5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
| 6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
| 7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
| 8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
| 9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
| 10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ x e. D ) -> x e. D ) |
| 12 |
|
riotaex |
|- ( iota_ y e. N { x , y } e. E ) e. _V |
| 13 |
10
|
fvmpt2 |
|- ( ( x e. D /\ ( iota_ y e. N { x , y } e. E ) e. _V ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) ) |
| 14 |
11 12 13
|
sylancl |
|- ( ( ph /\ x e. D ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) ) |
| 15 |
14
|
sneqd |
|- ( ( ph /\ x e. D ) -> { ( A ` x ) } = { ( iota_ y e. N { x , y } e. E ) } ) |
| 16 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem3 |
|- ( ( ph /\ x e. D ) -> { ( iota_ y e. N { x , y } e. E ) } = ( ( G NeighbVtx x ) i^i N ) ) |
| 17 |
15 16
|
eqtrd |
|- ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) ) |