| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | frgrncvvdeq.nx |  |-  D = ( G NeighbVtx X ) | 
						
							| 4 |  | frgrncvvdeq.ny |  |-  N = ( G NeighbVtx Y ) | 
						
							| 5 |  | frgrncvvdeq.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | frgrncvvdeq.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | frgrncvvdeq.ne |  |-  ( ph -> X =/= Y ) | 
						
							| 8 |  | frgrncvvdeq.xy |  |-  ( ph -> Y e/ D ) | 
						
							| 9 |  | frgrncvvdeq.f |  |-  ( ph -> G e. FriendGraph ) | 
						
							| 10 |  | frgrncvvdeq.a |  |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem5 |  |-  ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) ) | 
						
							| 12 |  | fvex |  |-  ( A ` x ) e. _V | 
						
							| 13 |  | elinsn |  |-  ( ( ( A ` x ) e. _V /\ ( ( G NeighbVtx x ) i^i N ) = { ( A ` x ) } ) -> ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) ) | 
						
							| 14 | 12 13 | mpan |  |-  ( ( ( G NeighbVtx x ) i^i N ) = { ( A ` x ) } -> ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) ) | 
						
							| 15 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 16 | 2 | nbusgreledg |  |-  ( G e. USGraph -> ( ( A ` x ) e. ( G NeighbVtx x ) <-> { ( A ` x ) , x } e. E ) ) | 
						
							| 17 |  | prcom |  |-  { ( A ` x ) , x } = { x , ( A ` x ) } | 
						
							| 18 | 17 | eleq1i |  |-  ( { ( A ` x ) , x } e. E <-> { x , ( A ` x ) } e. E ) | 
						
							| 19 | 16 18 | bitrdi |  |-  ( G e. USGraph -> ( ( A ` x ) e. ( G NeighbVtx x ) <-> { x , ( A ` x ) } e. E ) ) | 
						
							| 20 | 19 | biimpd |  |-  ( G e. USGraph -> ( ( A ` x ) e. ( G NeighbVtx x ) -> { x , ( A ` x ) } e. E ) ) | 
						
							| 21 | 9 15 20 | 3syl |  |-  ( ph -> ( ( A ` x ) e. ( G NeighbVtx x ) -> { x , ( A ` x ) } e. E ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ x e. D ) -> ( ( A ` x ) e. ( G NeighbVtx x ) -> { x , ( A ` x ) } e. E ) ) | 
						
							| 23 | 22 | com12 |  |-  ( ( A ` x ) e. ( G NeighbVtx x ) -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) ) | 
						
							| 25 | 14 24 | syl |  |-  ( ( ( G NeighbVtx x ) i^i N ) = { ( A ` x ) } -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) ) | 
						
							| 26 | 25 | eqcoms |  |-  ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) ) | 
						
							| 27 | 11 26 | mpcom |  |-  ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) |