| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | frgrncvvdeq.nx | ⊢ 𝐷  =  ( 𝐺  NeighbVtx  𝑋 ) | 
						
							| 4 |  | frgrncvvdeq.ny | ⊢ 𝑁  =  ( 𝐺  NeighbVtx  𝑌 ) | 
						
							| 5 |  | frgrncvvdeq.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | frgrncvvdeq.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | frgrncvvdeq.ne | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 8 |  | frgrncvvdeq.xy | ⊢ ( 𝜑  →  𝑌  ∉  𝐷 ) | 
						
							| 9 |  | frgrncvvdeq.f | ⊢ ( 𝜑  →  𝐺  ∈   FriendGraph  ) | 
						
							| 10 |  | frgrncvvdeq.a | ⊢ 𝐴  =  ( 𝑥  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { ( 𝐴 ‘ 𝑥 ) }  =  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  𝑁 ) ) | 
						
							| 12 |  | fvex | ⊢ ( 𝐴 ‘ 𝑥 )  ∈  V | 
						
							| 13 |  | elinsn | ⊢ ( ( ( 𝐴 ‘ 𝑥 )  ∈  V  ∧  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  𝑁 )  =  { ( 𝐴 ‘ 𝑥 ) } )  →  ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  ( 𝐴 ‘ 𝑥 )  ∈  𝑁 ) ) | 
						
							| 14 | 12 13 | mpan | ⊢ ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  𝑁 )  =  { ( 𝐴 ‘ 𝑥 ) }  →  ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  ( 𝐴 ‘ 𝑥 )  ∈  𝑁 ) ) | 
						
							| 15 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 16 | 2 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  ↔  { ( 𝐴 ‘ 𝑥 ) ,  𝑥 }  ∈  𝐸 ) ) | 
						
							| 17 |  | prcom | ⊢ { ( 𝐴 ‘ 𝑥 ) ,  𝑥 }  =  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) } | 
						
							| 18 | 17 | eleq1i | ⊢ ( { ( 𝐴 ‘ 𝑥 ) ,  𝑥 }  ∈  𝐸  ↔  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) | 
						
							| 19 | 16 18 | bitrdi | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  ↔  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 20 | 19 | biimpd | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 21 | 9 15 20 | 3syl | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 23 | 22 | com12 | ⊢ ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐴 ‘ 𝑥 )  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  ( 𝐴 ‘ 𝑥 )  ∈  𝑁 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 25 | 14 24 | syl | ⊢ ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  𝑁 )  =  { ( 𝐴 ‘ 𝑥 ) }  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 26 | 25 | eqcoms | ⊢ ( { ( 𝐴 ‘ 𝑥 ) }  =  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  𝑁 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) ) | 
						
							| 27 | 11 26 | mpcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑥 ,  ( 𝐴 ‘ 𝑥 ) }  ∈  𝐸 ) |