| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
frgrncvvdeq.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
frgrncvvdeq.nx |
⊢ 𝐷 = ( 𝐺 NeighbVtx 𝑋 ) |
| 4 |
|
frgrncvvdeq.ny |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) |
| 5 |
|
frgrncvvdeq.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
frgrncvvdeq.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
frgrncvvdeq.ne |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 8 |
|
frgrncvvdeq.xy |
⊢ ( 𝜑 → 𝑌 ∉ 𝐷 ) |
| 9 |
|
frgrncvvdeq.f |
⊢ ( 𝜑 → 𝐺 ∈ FriendGraph ) |
| 10 |
|
frgrncvvdeq.a |
⊢ 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( ℩ 𝑦 ∈ 𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) |
| 12 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑥 ) ∈ V |
| 13 |
12
|
snid |
⊢ ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } |
| 14 |
|
eleq2 |
⊢ ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } ↔ ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) ) |
| 15 |
14
|
biimpa |
⊢ ( ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ) |
| 16 |
|
elin |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ↔ ( ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐺 NeighbVtx 𝑥 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 ) ) |
| 17 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
⊢ ( 𝜑 → 𝑋 ∉ 𝑁 ) |
| 18 |
|
df-nel |
⊢ ( 𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ 𝑁 ) |
| 19 |
|
nelelne |
⊢ ( ¬ 𝑋 ∈ 𝑁 → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 20 |
18 19
|
sylbi |
⊢ ( 𝑋 ∉ 𝑁 → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 21 |
17 20
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 23 |
22
|
com12 |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ 𝑁 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 24 |
16 23
|
simplbiim |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 25 |
15 24
|
syl |
⊢ ( ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ { ( 𝐴 ‘ 𝑥 ) } ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 26 |
13 25
|
mpan2 |
⊢ ( { ( 𝐴 ‘ 𝑥 ) } = ( ( 𝐺 NeighbVtx 𝑥 ) ∩ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) ) |
| 27 |
11 26
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ 𝑋 ) |