| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
| 2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
| 3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
| 4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
| 5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
| 6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
| 7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
| 8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
| 9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
| 10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem5 |
|- ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) ) |
| 12 |
|
fvex |
|- ( A ` x ) e. _V |
| 13 |
12
|
snid |
|- ( A ` x ) e. { ( A ` x ) } |
| 14 |
|
eleq2 |
|- ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) -> ( ( A ` x ) e. { ( A ` x ) } <-> ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) ) ) |
| 15 |
14
|
biimpa |
|- ( ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) /\ ( A ` x ) e. { ( A ` x ) } ) -> ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) ) |
| 16 |
|
elin |
|- ( ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) <-> ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) ) |
| 17 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
|- ( ph -> X e/ N ) |
| 18 |
|
df-nel |
|- ( X e/ N <-> -. X e. N ) |
| 19 |
|
nelelne |
|- ( -. X e. N -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) ) |
| 20 |
18 19
|
sylbi |
|- ( X e/ N -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) ) |
| 21 |
17 20
|
syl |
|- ( ph -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ x e. D ) -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) ) |
| 23 |
22
|
com12 |
|- ( ( A ` x ) e. N -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) ) |
| 24 |
16 23
|
simplbiim |
|- ( ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) ) |
| 25 |
15 24
|
syl |
|- ( ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) /\ ( A ` x ) e. { ( A ` x ) } ) -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) ) |
| 26 |
13 25
|
mpan2 |
|- ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) ) |
| 27 |
11 26
|
mpcom |
|- ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) |
| 28 |
27
|
ralrimiva |
|- ( ph -> A. x e. D ( A ` x ) =/= X ) |