Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem4 |
|- ( ph -> A : D --> N ) |
12 |
|
simpr |
|- ( ( ph /\ A : D --> N ) -> A : D --> N ) |
13 |
|
ffvelrn |
|- ( ( A : D --> N /\ u e. D ) -> ( A ` u ) e. N ) |
14 |
13
|
ad2ant2lr |
|- ( ( ( ph /\ A : D --> N ) /\ ( u e. D /\ w e. D ) ) -> ( A ` u ) e. N ) |
15 |
14
|
adantr |
|- ( ( ( ( ph /\ A : D --> N ) /\ ( u e. D /\ w e. D ) ) /\ ( A ` u ) = ( A ` w ) ) -> ( A ` u ) e. N ) |
16 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
|- ( ph -> X e/ N ) |
17 |
|
preq1 |
|- ( x = u -> { x , y } = { u , y } ) |
18 |
17
|
eleq1d |
|- ( x = u -> ( { x , y } e. E <-> { u , y } e. E ) ) |
19 |
18
|
riotabidv |
|- ( x = u -> ( iota_ y e. N { x , y } e. E ) = ( iota_ y e. N { u , y } e. E ) ) |
20 |
19
|
cbvmptv |
|- ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) = ( u e. D |-> ( iota_ y e. N { u , y } e. E ) ) |
21 |
10 20
|
eqtri |
|- A = ( u e. D |-> ( iota_ y e. N { u , y } e. E ) ) |
22 |
1 2 3 4 5 6 7 8 9 21
|
frgrncvvdeqlem6 |
|- ( ( ph /\ u e. D ) -> { u , ( A ` u ) } e. E ) |
23 |
|
preq1 |
|- ( x = w -> { x , y } = { w , y } ) |
24 |
23
|
eleq1d |
|- ( x = w -> ( { x , y } e. E <-> { w , y } e. E ) ) |
25 |
24
|
riotabidv |
|- ( x = w -> ( iota_ y e. N { x , y } e. E ) = ( iota_ y e. N { w , y } e. E ) ) |
26 |
25
|
cbvmptv |
|- ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) = ( w e. D |-> ( iota_ y e. N { w , y } e. E ) ) |
27 |
10 26
|
eqtri |
|- A = ( w e. D |-> ( iota_ y e. N { w , y } e. E ) ) |
28 |
1 2 3 4 5 6 7 8 9 27
|
frgrncvvdeqlem6 |
|- ( ( ph /\ w e. D ) -> { w , ( A ` w ) } e. E ) |
29 |
22 28
|
anim12dan |
|- ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( { u , ( A ` u ) } e. E /\ { w , ( A ` w ) } e. E ) ) |
30 |
|
preq2 |
|- ( ( A ` w ) = ( A ` u ) -> { w , ( A ` w ) } = { w , ( A ` u ) } ) |
31 |
30
|
eleq1d |
|- ( ( A ` w ) = ( A ` u ) -> ( { w , ( A ` w ) } e. E <-> { w , ( A ` u ) } e. E ) ) |
32 |
31
|
anbi2d |
|- ( ( A ` w ) = ( A ` u ) -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` w ) } e. E ) <-> ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) ) ) |
33 |
32
|
eqcoms |
|- ( ( A ` u ) = ( A ` w ) -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` w ) } e. E ) <-> ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) ) ) |
34 |
33
|
biimpa |
|- ( ( ( A ` u ) = ( A ` w ) /\ ( { u , ( A ` u ) } e. E /\ { w , ( A ` w ) } e. E ) ) -> ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) ) |
35 |
|
df-ne |
|- ( u =/= w <-> -. u = w ) |
36 |
2 3
|
frgrnbnb |
|- ( ( G e. FriendGraph /\ ( u e. D /\ w e. D ) /\ u =/= w ) -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) -> ( A ` u ) = X ) ) |
37 |
9 36
|
syl3an1 |
|- ( ( ph /\ ( u e. D /\ w e. D ) /\ u =/= w ) -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) -> ( A ` u ) = X ) ) |
38 |
37
|
3expa |
|- ( ( ( ph /\ ( u e. D /\ w e. D ) ) /\ u =/= w ) -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) -> ( A ` u ) = X ) ) |
39 |
|
df-nel |
|- ( X e/ N <-> -. X e. N ) |
40 |
|
eleq1 |
|- ( ( A ` u ) = X -> ( ( A ` u ) e. N <-> X e. N ) ) |
41 |
40
|
biimpa |
|- ( ( ( A ` u ) = X /\ ( A ` u ) e. N ) -> X e. N ) |
42 |
41
|
pm2.24d |
|- ( ( ( A ` u ) = X /\ ( A ` u ) e. N ) -> ( -. X e. N -> u = w ) ) |
43 |
42
|
expcom |
|- ( ( A ` u ) e. N -> ( ( A ` u ) = X -> ( -. X e. N -> u = w ) ) ) |
44 |
43
|
com13 |
|- ( -. X e. N -> ( ( A ` u ) = X -> ( ( A ` u ) e. N -> u = w ) ) ) |
45 |
39 44
|
sylbi |
|- ( X e/ N -> ( ( A ` u ) = X -> ( ( A ` u ) e. N -> u = w ) ) ) |
46 |
45
|
com12 |
|- ( ( A ` u ) = X -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) |
47 |
38 46
|
syl6 |
|- ( ( ( ph /\ ( u e. D /\ w e. D ) ) /\ u =/= w ) -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) |
48 |
47
|
expcom |
|- ( u =/= w -> ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) |
49 |
48
|
com23 |
|- ( u =/= w -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) -> ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) |
50 |
35 49
|
sylbir |
|- ( -. u = w -> ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` u ) } e. E ) -> ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) |
51 |
34 50
|
syl5com |
|- ( ( ( A ` u ) = ( A ` w ) /\ ( { u , ( A ` u ) } e. E /\ { w , ( A ` w ) } e. E ) ) -> ( -. u = w -> ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) |
52 |
51
|
expcom |
|- ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` w ) } e. E ) -> ( ( A ` u ) = ( A ` w ) -> ( -. u = w -> ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) ) |
53 |
52
|
com24 |
|- ( ( { u , ( A ` u ) } e. E /\ { w , ( A ` w ) } e. E ) -> ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( -. u = w -> ( ( A ` u ) = ( A ` w ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) ) |
54 |
29 53
|
mpcom |
|- ( ( ph /\ ( u e. D /\ w e. D ) ) -> ( -. u = w -> ( ( A ` u ) = ( A ` w ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) |
55 |
54
|
ex |
|- ( ph -> ( ( u e. D /\ w e. D ) -> ( -. u = w -> ( ( A ` u ) = ( A ` w ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) ) |
56 |
55
|
com3r |
|- ( -. u = w -> ( ph -> ( ( u e. D /\ w e. D ) -> ( ( A ` u ) = ( A ` w ) -> ( X e/ N -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) ) |
57 |
56
|
com15 |
|- ( X e/ N -> ( ph -> ( ( u e. D /\ w e. D ) -> ( ( A ` u ) = ( A ` w ) -> ( -. u = w -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) ) |
58 |
16 57
|
mpcom |
|- ( ph -> ( ( u e. D /\ w e. D ) -> ( ( A ` u ) = ( A ` w ) -> ( -. u = w -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) |
59 |
58
|
expd |
|- ( ph -> ( u e. D -> ( w e. D -> ( ( A ` u ) = ( A ` w ) -> ( -. u = w -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) ) |
60 |
59
|
adantr |
|- ( ( ph /\ A : D --> N ) -> ( u e. D -> ( w e. D -> ( ( A ` u ) = ( A ` w ) -> ( -. u = w -> ( ( A ` u ) e. N -> u = w ) ) ) ) ) ) |
61 |
60
|
imp42 |
|- ( ( ( ( ph /\ A : D --> N ) /\ ( u e. D /\ w e. D ) ) /\ ( A ` u ) = ( A ` w ) ) -> ( -. u = w -> ( ( A ` u ) e. N -> u = w ) ) ) |
62 |
15 61
|
mpid |
|- ( ( ( ( ph /\ A : D --> N ) /\ ( u e. D /\ w e. D ) ) /\ ( A ` u ) = ( A ` w ) ) -> ( -. u = w -> u = w ) ) |
63 |
62
|
pm2.18d |
|- ( ( ( ( ph /\ A : D --> N ) /\ ( u e. D /\ w e. D ) ) /\ ( A ` u ) = ( A ` w ) ) -> u = w ) |
64 |
63
|
ex |
|- ( ( ( ph /\ A : D --> N ) /\ ( u e. D /\ w e. D ) ) -> ( ( A ` u ) = ( A ` w ) -> u = w ) ) |
65 |
64
|
ralrimivva |
|- ( ( ph /\ A : D --> N ) -> A. u e. D A. w e. D ( ( A ` u ) = ( A ` w ) -> u = w ) ) |
66 |
|
dff13 |
|- ( A : D -1-1-> N <-> ( A : D --> N /\ A. u e. D A. w e. D ( ( A ` u ) = ( A ` w ) -> u = w ) ) ) |
67 |
12 65 66
|
sylanbrc |
|- ( ( ph /\ A : D --> N ) -> A : D -1-1-> N ) |
68 |
11 67
|
mpdan |
|- ( ph -> A : D -1-1-> N ) |