Metamath Proof Explorer


Theorem frgrncvvdeqlem8

Description: Lemma 8 for frgrncvvdeq . This corresponds to statement 2 in Huneke p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021) (Revised by AV, 30-Dec-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 V = Vtx G
frgrncvvdeq.e E = Edg G
frgrncvvdeq.nx D = G NeighbVtx X
frgrncvvdeq.ny N = G NeighbVtx Y
frgrncvvdeq.x φ X V
frgrncvvdeq.y φ Y V
frgrncvvdeq.ne φ X Y
frgrncvvdeq.xy φ Y D
frgrncvvdeq.f φ G FriendGraph
frgrncvvdeq.a A = x D ι y N | x y E
Assertion frgrncvvdeqlem8 φ A : D 1-1 N

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V = Vtx G
2 frgrncvvdeq.e E = Edg G
3 frgrncvvdeq.nx D = G NeighbVtx X
4 frgrncvvdeq.ny N = G NeighbVtx Y
5 frgrncvvdeq.x φ X V
6 frgrncvvdeq.y φ Y V
7 frgrncvvdeq.ne φ X Y
8 frgrncvvdeq.xy φ Y D
9 frgrncvvdeq.f φ G FriendGraph
10 frgrncvvdeq.a A = x D ι y N | x y E
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem4 φ A : D N
12 simpr φ A : D N A : D N
13 ffvelrn A : D N u D A u N
14 13 ad2ant2lr φ A : D N u D w D A u N
15 14 adantr φ A : D N u D w D A u = A w A u N
16 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem1 φ X N
17 preq1 x = u x y = u y
18 17 eleq1d x = u x y E u y E
19 18 riotabidv x = u ι y N | x y E = ι y N | u y E
20 19 cbvmptv x D ι y N | x y E = u D ι y N | u y E
21 10 20 eqtri A = u D ι y N | u y E
22 1 2 3 4 5 6 7 8 9 21 frgrncvvdeqlem6 φ u D u A u E
23 preq1 x = w x y = w y
24 23 eleq1d x = w x y E w y E
25 24 riotabidv x = w ι y N | x y E = ι y N | w y E
26 25 cbvmptv x D ι y N | x y E = w D ι y N | w y E
27 10 26 eqtri A = w D ι y N | w y E
28 1 2 3 4 5 6 7 8 9 27 frgrncvvdeqlem6 φ w D w A w E
29 22 28 anim12dan φ u D w D u A u E w A w E
30 preq2 A w = A u w A w = w A u
31 30 eleq1d A w = A u w A w E w A u E
32 31 anbi2d A w = A u u A u E w A w E u A u E w A u E
33 32 eqcoms A u = A w u A u E w A w E u A u E w A u E
34 33 biimpa A u = A w u A u E w A w E u A u E w A u E
35 df-ne u w ¬ u = w
36 2 3 frgrnbnb G FriendGraph u D w D u w u A u E w A u E A u = X
37 9 36 syl3an1 φ u D w D u w u A u E w A u E A u = X
38 37 3expa φ u D w D u w u A u E w A u E A u = X
39 df-nel X N ¬ X N
40 eleq1 A u = X A u N X N
41 40 biimpa A u = X A u N X N
42 41 pm2.24d A u = X A u N ¬ X N u = w
43 42 expcom A u N A u = X ¬ X N u = w
44 43 com13 ¬ X N A u = X A u N u = w
45 39 44 sylbi X N A u = X A u N u = w
46 45 com12 A u = X X N A u N u = w
47 38 46 syl6 φ u D w D u w u A u E w A u E X N A u N u = w
48 47 expcom u w φ u D w D u A u E w A u E X N A u N u = w
49 48 com23 u w u A u E w A u E φ u D w D X N A u N u = w
50 35 49 sylbir ¬ u = w u A u E w A u E φ u D w D X N A u N u = w
51 34 50 syl5com A u = A w u A u E w A w E ¬ u = w φ u D w D X N A u N u = w
52 51 expcom u A u E w A w E A u = A w ¬ u = w φ u D w D X N A u N u = w
53 52 com24 u A u E w A w E φ u D w D ¬ u = w A u = A w X N A u N u = w
54 29 53 mpcom φ u D w D ¬ u = w A u = A w X N A u N u = w
55 54 ex φ u D w D ¬ u = w A u = A w X N A u N u = w
56 55 com3r ¬ u = w φ u D w D A u = A w X N A u N u = w
57 56 com15 X N φ u D w D A u = A w ¬ u = w A u N u = w
58 16 57 mpcom φ u D w D A u = A w ¬ u = w A u N u = w
59 58 expd φ u D w D A u = A w ¬ u = w A u N u = w
60 59 adantr φ A : D N u D w D A u = A w ¬ u = w A u N u = w
61 60 imp42 φ A : D N u D w D A u = A w ¬ u = w A u N u = w
62 15 61 mpid φ A : D N u D w D A u = A w ¬ u = w u = w
63 62 pm2.18d φ A : D N u D w D A u = A w u = w
64 63 ex φ A : D N u D w D A u = A w u = w
65 64 ralrimivva φ A : D N u D w D A u = A w u = w
66 dff13 A : D 1-1 N A : D N u D w D A u = A w u = w
67 12 65 66 sylanbrc φ A : D N A : D 1-1 N
68 11 67 mpdan φ A : D 1-1 N