| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | frgrwopreglem4a.e |  |-  E = ( Edg ` G ) | 
						
							| 4 |  | id |  |-  ( G e. FriendGraph -> G e. FriendGraph ) | 
						
							| 5 |  | simpl |  |-  ( ( A e. V /\ X e. V ) -> A e. V ) | 
						
							| 6 |  | simpl |  |-  ( ( B e. V /\ Y e. V ) -> B e. V ) | 
						
							| 7 | 5 6 | anim12i |  |-  ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( A e. V /\ B e. V ) ) | 
						
							| 8 |  | simp2 |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` A ) =/= ( D ` B ) ) | 
						
							| 9 | 1 2 3 | frgrwopreglem4a |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ ( D ` A ) =/= ( D ` B ) ) -> { A , B } e. E ) | 
						
							| 10 | 4 7 8 9 | syl3an |  |-  ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { A , B } e. E ) | 
						
							| 11 |  | simpr |  |-  ( ( A e. V /\ X e. V ) -> X e. V ) | 
						
							| 12 | 11 6 | anim12ci |  |-  ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( B e. V /\ X e. V ) ) | 
						
							| 13 |  | pm13.18 |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) ) -> ( D ` X ) =/= ( D ` B ) ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` X ) =/= ( D ` B ) ) | 
						
							| 15 | 14 | necomd |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` B ) =/= ( D ` X ) ) | 
						
							| 16 | 1 2 3 | frgrwopreglem4a |  |-  ( ( G e. FriendGraph /\ ( B e. V /\ X e. V ) /\ ( D ` B ) =/= ( D ` X ) ) -> { B , X } e. E ) | 
						
							| 17 | 4 12 15 16 | syl3an |  |-  ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { B , X } e. E ) | 
						
							| 18 |  | simpr |  |-  ( ( B e. V /\ Y e. V ) -> Y e. V ) | 
						
							| 19 | 11 18 | anim12i |  |-  ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( X e. V /\ Y e. V ) ) | 
						
							| 20 |  | simp3 |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` X ) =/= ( D ` Y ) ) | 
						
							| 21 | 1 2 3 | frgrwopreglem4a |  |-  ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> { X , Y } e. E ) | 
						
							| 22 | 4 19 20 21 | syl3an |  |-  ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { X , Y } e. E ) | 
						
							| 23 | 5 18 | anim12ci |  |-  ( ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) -> ( Y e. V /\ A e. V ) ) | 
						
							| 24 |  | pm13.181 |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` A ) =/= ( D ` Y ) ) | 
						
							| 25 | 24 | 3adant2 |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` A ) =/= ( D ` Y ) ) | 
						
							| 26 | 25 | necomd |  |-  ( ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( D ` Y ) =/= ( D ` A ) ) | 
						
							| 27 | 1 2 3 | frgrwopreglem4a |  |-  ( ( G e. FriendGraph /\ ( Y e. V /\ A e. V ) /\ ( D ` Y ) =/= ( D ` A ) ) -> { Y , A } e. E ) | 
						
							| 28 | 4 23 26 27 | syl3an |  |-  ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> { Y , A } e. E ) | 
						
							| 29 | 22 28 | jca |  |-  ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> ( { X , Y } e. E /\ { Y , A } e. E ) ) | 
						
							| 30 | 10 17 29 | jca31 |  |-  ( ( G e. FriendGraph /\ ( ( A e. V /\ X e. V ) /\ ( B e. V /\ Y e. V ) ) /\ ( ( D ` A ) = ( D ` X ) /\ ( D ` A ) =/= ( D ` B ) /\ ( D ` X ) =/= ( D ` Y ) ) ) -> ( ( { A , B } e. E /\ { B , X } e. E ) /\ ( { X , Y } e. E /\ { Y , A } e. E ) ) ) |