| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
frgrncvvdeq.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
| 3 |
|
frgrwopreglem4a.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
|
id |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph ) |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 6 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
| 7 |
5 6
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
| 8 |
|
simp2 |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ) |
| 9 |
1 2 3
|
frgrwopreglem4a |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) |
| 10 |
4 7 8 9
|
syl3an |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 12 |
11 6
|
anim12ci |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) |
| 13 |
|
pm13.18 |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ) → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝐵 ) ) |
| 14 |
13
|
3adant3 |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝐵 ) ) |
| 15 |
14
|
necomd |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐵 ) ≠ ( 𝐷 ‘ 𝑋 ) ) |
| 16 |
1 2 3
|
frgrwopreglem4a |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝐵 ) ≠ ( 𝐷 ‘ 𝑋 ) ) → { 𝐵 , 𝑋 } ∈ 𝐸 ) |
| 17 |
4 12 15 16
|
syl3an |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) → { 𝐵 , 𝑋 } ∈ 𝐸 ) |
| 18 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) |
| 19 |
11 18
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) |
| 20 |
|
simp3 |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) |
| 21 |
1 2 3
|
frgrwopreglem4a |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) |
| 22 |
4 19 20 21
|
syl3an |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) → { 𝑋 , 𝑌 } ∈ 𝐸 ) |
| 23 |
5 18
|
anim12ci |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
| 24 |
|
pm13.181 |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝑌 ) ) |
| 25 |
24
|
3adant2 |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝑌 ) ) |
| 26 |
25
|
necomd |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) → ( 𝐷 ‘ 𝑌 ) ≠ ( 𝐷 ‘ 𝐴 ) ) |
| 27 |
1 2 3
|
frgrwopreglem4a |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑌 ) ≠ ( 𝐷 ‘ 𝐴 ) ) → { 𝑌 , 𝐴 } ∈ 𝐸 ) |
| 28 |
4 23 26 27
|
syl3an |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) → { 𝑌 , 𝐴 } ∈ 𝐸 ) |
| 29 |
22 28
|
jca |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) → ( { 𝑋 , 𝑌 } ∈ 𝐸 ∧ { 𝑌 , 𝐴 } ∈ 𝐸 ) ) |
| 30 |
10 17 29
|
jca31 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) ∧ ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝑋 ) ∧ ( 𝐷 ‘ 𝐴 ) ≠ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝑋 ) ≠ ( 𝐷 ‘ 𝑌 ) ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝑋 } ∈ 𝐸 ) ∧ ( { 𝑋 , 𝑌 } ∈ 𝐸 ∧ { 𝑌 , 𝐴 } ∈ 𝐸 ) ) ) |