Metamath Proof Explorer


Theorem frgrwopregbsn

Description: According to statement 5 in Huneke p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v
|- V = ( Vtx ` G )
frgrwopreg.d
|- D = ( VtxDeg ` G )
frgrwopreg.a
|- A = { x e. V | ( D ` x ) = K }
frgrwopreg.b
|- B = ( V \ A )
frgrwopreg.e
|- E = ( Edg ` G )
Assertion frgrwopregbsn
|- ( ( G e. FriendGraph /\ X e. V /\ B = { X } ) -> A. w e. ( V \ { X } ) { X , w } e. E )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v
 |-  V = ( Vtx ` G )
2 frgrwopreg.d
 |-  D = ( VtxDeg ` G )
3 frgrwopreg.a
 |-  A = { x e. V | ( D ` x ) = K }
4 frgrwopreg.b
 |-  B = ( V \ A )
5 frgrwopreg.e
 |-  E = ( Edg ` G )
6 1 2 3 4 5 frgrwopreglem4
 |-  ( G e. FriendGraph -> A. w e. A A. v e. B { w , v } e. E )
7 ralcom
 |-  ( A. w e. A A. v e. B { w , v } e. E <-> A. v e. B A. w e. A { w , v } e. E )
8 snidg
 |-  ( X e. V -> X e. { X } )
9 8 adantr
 |-  ( ( X e. V /\ B = { X } ) -> X e. { X } )
10 eleq2
 |-  ( B = { X } -> ( X e. B <-> X e. { X } ) )
11 10 adantl
 |-  ( ( X e. V /\ B = { X } ) -> ( X e. B <-> X e. { X } ) )
12 9 11 mpbird
 |-  ( ( X e. V /\ B = { X } ) -> X e. B )
13 preq2
 |-  ( v = X -> { w , v } = { w , X } )
14 prcom
 |-  { w , X } = { X , w }
15 13 14 eqtrdi
 |-  ( v = X -> { w , v } = { X , w } )
16 15 eleq1d
 |-  ( v = X -> ( { w , v } e. E <-> { X , w } e. E ) )
17 16 ralbidv
 |-  ( v = X -> ( A. w e. A { w , v } e. E <-> A. w e. A { X , w } e. E ) )
18 17 rspcv
 |-  ( X e. B -> ( A. v e. B A. w e. A { w , v } e. E -> A. w e. A { X , w } e. E ) )
19 12 18 syl
 |-  ( ( X e. V /\ B = { X } ) -> ( A. v e. B A. w e. A { w , v } e. E -> A. w e. A { X , w } e. E ) )
20 3 ssrab3
 |-  A C_ V
21 ssdifim
 |-  ( ( A C_ V /\ B = ( V \ A ) ) -> A = ( V \ B ) )
22 20 4 21 mp2an
 |-  A = ( V \ B )
23 difeq2
 |-  ( B = { X } -> ( V \ B ) = ( V \ { X } ) )
24 23 adantl
 |-  ( ( X e. V /\ B = { X } ) -> ( V \ B ) = ( V \ { X } ) )
25 22 24 syl5eq
 |-  ( ( X e. V /\ B = { X } ) -> A = ( V \ { X } ) )
26 25 raleqdv
 |-  ( ( X e. V /\ B = { X } ) -> ( A. w e. A { X , w } e. E <-> A. w e. ( V \ { X } ) { X , w } e. E ) )
27 19 26 sylibd
 |-  ( ( X e. V /\ B = { X } ) -> ( A. v e. B A. w e. A { w , v } e. E -> A. w e. ( V \ { X } ) { X , w } e. E ) )
28 7 27 syl5bi
 |-  ( ( X e. V /\ B = { X } ) -> ( A. w e. A A. v e. B { w , v } e. E -> A. w e. ( V \ { X } ) { X , w } e. E ) )
29 6 28 syl5com
 |-  ( G e. FriendGraph -> ( ( X e. V /\ B = { X } ) -> A. w e. ( V \ { X } ) { X , w } e. E ) )
30 29 3impib
 |-  ( ( G e. FriendGraph /\ X e. V /\ B = { X } ) -> A. w e. ( V \ { X } ) { X , w } e. E )