Metamath Proof Explorer


Theorem frins

Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins.1
|- R Fr A
frins.2
|- R Se A
frins.3
|- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) )
Assertion frins
|- ( y e. A -> ph )

Proof

Step Hyp Ref Expression
1 frins.1
 |-  R Fr A
2 frins.2
 |-  R Se A
3 frins.3
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) )
4 3 frinsg
 |-  ( ( R Fr A /\ R Se A ) -> A. y e. A ph )
5 1 2 4 mp2an
 |-  A. y e. A ph
6 5 rspec
 |-  ( y e. A -> ph )