Metamath Proof Explorer


Theorem frins

Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins.1 𝑅 Fr 𝐴
frins.2 𝑅 Se 𝐴
frins.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
Assertion frins ( 𝑦𝐴𝜑 )

Proof

Step Hyp Ref Expression
1 frins.1 𝑅 Fr 𝐴
2 frins.2 𝑅 Se 𝐴
3 frins.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
4 3 frinsg ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )
5 1 2 4 mp2an 𝑦𝐴 𝜑
6 5 rspec ( 𝑦𝐴𝜑 )