Metamath Proof Explorer


Theorem frins2f

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses frins2f.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
frins2f.2 𝑦 𝜓
frins2f.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
Assertion frins2f ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 frins2f.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
2 frins2f.2 𝑦 𝜓
3 frins2f.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
4 sbsbc ( [ 𝑧 / 𝑦 ] 𝜑[ 𝑧 / 𝑦 ] 𝜑 )
5 2 3 sbiev ( [ 𝑧 / 𝑦 ] 𝜑𝜓 )
6 4 5 bitr3i ( [ 𝑧 / 𝑦 ] 𝜑𝜓 )
7 6 ralbii ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 )
8 7 1 syl5bi ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
9 8 frinsg ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )