Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frins2f.1 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
frins2f.2 | ⊢ Ⅎ 𝑦 𝜓 | ||
frins2f.3 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | frins2f | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frins2f.1 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
2 | frins2f.2 | ⊢ Ⅎ 𝑦 𝜓 | |
3 | frins2f.3 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
4 | sbsbc | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) | |
5 | 2 3 | sbiev | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
6 | 4 5 | bitr3i | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
7 | 6 | ralbii | ⊢ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 ) |
8 | 7 1 | syl5bi | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) |
9 | 8 | frinsg | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |