Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frins2f.1 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
| frins2f.2 | ⊢ Ⅎ 𝑦 𝜓 | ||
| frins2f.3 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | frins2f | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frins2f.1 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
| 2 | frins2f.2 | ⊢ Ⅎ 𝑦 𝜓 | |
| 3 | frins2f.3 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | sbsbc | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 5 | 2 3 | sbiev | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
| 6 | 4 5 | bitr3i | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 ) |
| 8 | 7 1 | biimtrid | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) |
| 9 | 8 | frinsg | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |