| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frinsg.1 | ⊢ ( 𝑦  ∈  𝐴  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 ) ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴 | 
						
							| 3 |  | dfss3 | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 5 | 4 | elrabsf | ⊢ ( 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 7 | 6 | ralimi | ⊢ ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) 𝑧  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 8 | 3 7 | sylbi | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑦 𝑤  ∈  𝐴 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑦 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) | 
						
							| 11 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 12 | 10 11 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 | 
						
							| 13 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑦 ] 𝜑 | 
						
							| 14 | 12 13 | nfim | ⊢ Ⅎ 𝑦 ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 15 | 9 14 | nfim | ⊢ Ⅎ 𝑦 ( 𝑤  ∈  𝐴  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 16 |  | eleq1w | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) | 
						
							| 17 |  | predeq3 | ⊢ ( 𝑦  =  𝑤  →  Pred ( 𝑅 ,  𝐴 ,  𝑦 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) | 
						
							| 18 | 17 | raleqdv | ⊢ ( 𝑦  =  𝑤  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  ↔  ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 19 |  | sbceq1a | ⊢ ( 𝑦  =  𝑤  →  ( 𝜑  ↔  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 20 | 18 19 | imbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 )  ↔  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 21 | 16 20 | imbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝑦  ∈  𝐴  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) [ 𝑧  /  𝑦 ] 𝜑  →  𝜑 ) )  ↔  ( 𝑤  ∈  𝐴  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) ) | 
						
							| 22 | 15 21 1 | chvarfv | ⊢ ( 𝑤  ∈  𝐴  →  ( ∀ 𝑧  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) [ 𝑧  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 23 | 8 22 | syl5 | ⊢ ( 𝑤  ∈  𝐴  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 24 | 23 | anc2li | ⊢ ( 𝑤  ∈  𝐴  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 25 | 4 | elrabsf | ⊢ ( 𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 26 | 24 25 | imbitrrdi | ⊢ ( 𝑤  ∈  𝐴  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) ) | 
						
							| 27 | 26 | rgen | ⊢ ∀ 𝑤  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 28 |  | frind | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( { 𝑦  ∈  𝐴  ∣  𝜑 }  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  { 𝑦  ∈  𝐴  ∣  𝜑 }  →  𝑤  ∈  { 𝑦  ∈  𝐴  ∣  𝜑 } ) ) )  →  𝐴  =  { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 29 | 2 27 28 | mpanr12 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  𝐴  =  { 𝑦  ∈  𝐴  ∣  𝜑 } ) | 
						
							| 30 |  | rabid2 | ⊢ ( 𝐴  =  { 𝑦  ∈  𝐴  ∣  𝜑 }  ↔  ∀ 𝑦  ∈  𝐴 𝜑 ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑦  ∈  𝐴 𝜑 ) |