Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . Theorem 5.6(ii) of Levy p. 64. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frinsg.1 | |
|
Assertion | frinsg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frinsg.1 | |
|
2 | ssrab2 | |
|
3 | dfss3 | |
|
4 | nfcv | |
|
5 | 4 | elrabsf | |
6 | 5 | simprbi | |
7 | 6 | ralimi | |
8 | 3 7 | sylbi | |
9 | nfv | |
|
10 | nfcv | |
|
11 | nfsbc1v | |
|
12 | 10 11 | nfralw | |
13 | nfsbc1v | |
|
14 | 12 13 | nfim | |
15 | 9 14 | nfim | |
16 | eleq1w | |
|
17 | predeq3 | |
|
18 | 17 | raleqdv | |
19 | sbceq1a | |
|
20 | 18 19 | imbi12d | |
21 | 16 20 | imbi12d | |
22 | 15 21 1 | chvarfv | |
23 | 8 22 | syl5 | |
24 | 23 | anc2li | |
25 | 4 | elrabsf | |
26 | 24 25 | imbitrrdi | |
27 | 26 | rgen | |
28 | frind | |
|
29 | 2 27 28 | mpanr12 | |
30 | rabid2 | |
|
31 | 29 30 | sylib | |