Metamath Proof Explorer


Theorem frinsg

Description: Well-Founded Induction Schema. If a property passes from all elements less than y of a well-founded class A to y itself (induction hypothesis), then the property holds for all elements of A . Theorem 5.6(ii) of Levy p. 64. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis frinsg.1 yAzPredRAy[˙z/y]˙φφ
Assertion frinsg RFrARSeAyAφ

Proof

Step Hyp Ref Expression
1 frinsg.1 yAzPredRAy[˙z/y]˙φφ
2 ssrab2 yA|φA
3 dfss3 PredRAwyA|φzPredRAwzyA|φ
4 nfcv _yA
5 4 elrabsf zyA|φzA[˙z/y]˙φ
6 5 simprbi zyA|φ[˙z/y]˙φ
7 6 ralimi zPredRAwzyA|φzPredRAw[˙z/y]˙φ
8 3 7 sylbi PredRAwyA|φzPredRAw[˙z/y]˙φ
9 nfv ywA
10 nfcv _yPredRAw
11 nfsbc1v y[˙z/y]˙φ
12 10 11 nfralw yzPredRAw[˙z/y]˙φ
13 nfsbc1v y[˙w/y]˙φ
14 12 13 nfim yzPredRAw[˙z/y]˙φ[˙w/y]˙φ
15 9 14 nfim ywAzPredRAw[˙z/y]˙φ[˙w/y]˙φ
16 eleq1w y=wyAwA
17 predeq3 y=wPredRAy=PredRAw
18 17 raleqdv y=wzPredRAy[˙z/y]˙φzPredRAw[˙z/y]˙φ
19 sbceq1a y=wφ[˙w/y]˙φ
20 18 19 imbi12d y=wzPredRAy[˙z/y]˙φφzPredRAw[˙z/y]˙φ[˙w/y]˙φ
21 16 20 imbi12d y=wyAzPredRAy[˙z/y]˙φφwAzPredRAw[˙z/y]˙φ[˙w/y]˙φ
22 15 21 1 chvarfv wAzPredRAw[˙z/y]˙φ[˙w/y]˙φ
23 8 22 syl5 wAPredRAwyA|φ[˙w/y]˙φ
24 23 anc2li wAPredRAwyA|φwA[˙w/y]˙φ
25 4 elrabsf wyA|φwA[˙w/y]˙φ
26 24 25 imbitrrdi wAPredRAwyA|φwyA|φ
27 26 rgen wAPredRAwyA|φwyA|φ
28 frind RFrARSeAyA|φAwAPredRAwyA|φwyA|φA=yA|φ
29 2 27 28 mpanr12 RFrARSeAA=yA|φ
30 rabid2 A=yA|φyAφ
31 29 30 sylib RFrARSeAyAφ