Metamath Proof Explorer


Theorem frins2f

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses frins2f.1
|- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
frins2f.2
|- F/ y ps
frins2f.3
|- ( y = z -> ( ph <-> ps ) )
Assertion frins2f
|- ( ( R Fr A /\ R Se A ) -> A. y e. A ph )

Proof

Step Hyp Ref Expression
1 frins2f.1
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
2 frins2f.2
 |-  F/ y ps
3 frins2f.3
 |-  ( y = z -> ( ph <-> ps ) )
4 sbsbc
 |-  ( [ z / y ] ph <-> [. z / y ]. ph )
5 2 3 sbiev
 |-  ( [ z / y ] ph <-> ps )
6 4 5 bitr3i
 |-  ( [. z / y ]. ph <-> ps )
7 6 ralbii
 |-  ( A. z e. Pred ( R , A , y ) [. z / y ]. ph <-> A. z e. Pred ( R , A , y ) ps )
8 7 1 syl5bi
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) )
9 8 frinsg
 |-  ( ( R Fr A /\ R Se A ) -> A. y e. A ph )