Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frins2.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
frins2.3 | |- ( y = z -> ( ph <-> ps ) ) |
||
Assertion | frins2 | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frins2.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
2 | frins2.3 | |- ( y = z -> ( ph <-> ps ) ) |
|
3 | nfv | |- F/ y ps |
|
4 | 1 3 2 | frins2f | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |