Metamath Proof Explorer


Theorem frins2

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins2.1
|- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
frins2.3
|- ( y = z -> ( ph <-> ps ) )
Assertion frins2
|- ( ( R Fr A /\ R Se A ) -> A. y e. A ph )

Proof

Step Hyp Ref Expression
1 frins2.1
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
2 frins2.3
 |-  ( y = z -> ( ph <-> ps ) )
3 nfv
 |-  F/ y ps
4 1 3 2 frins2f
 |-  ( ( R Fr A /\ R Se A ) -> A. y e. A ph )