Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frins3.1 | |- ( y = z -> ( ph <-> ps ) ) |
|
| frins3.2 | |- ( y = B -> ( ph <-> ch ) ) |
||
| frins3.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
||
| Assertion | frins3 | |- ( ( ( R Fr A /\ R Se A ) /\ B e. A ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frins3.1 | |- ( y = z -> ( ph <-> ps ) ) |
|
| 2 | frins3.2 | |- ( y = B -> ( ph <-> ch ) ) |
|
| 3 | frins3.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| 4 | 3 1 | frins2 | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |
| 5 | 2 | rspcv | |- ( B e. A -> ( A. y e. A ph -> ch ) ) |
| 6 | 4 5 | mpan9 | |- ( ( ( R Fr A /\ R Se A ) /\ B e. A ) -> ch ) |