Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Infinity Well-Founded Induction frins3  
				
		 
		
			
		 
		Description:   Well-Founded Induction schema, using implicit substitution.
       (Contributed by Scott Fenton , 6-Feb-2011)   (Revised by Mario Carneiro , 26-Jun-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						frins3.1    ⊢   y  =  z    →    φ   ↔   ψ         
					 
					
						frins3.2    ⊢   y  =  B    →    φ   ↔   χ         
					 
					
						frins3.3    ⊢   y  ∈  A    →    ∀  z  ∈   Pred  R  A  y    ψ     →   φ         
					 
				
					Assertion 
					frins3    ⊢     R  Fr  A    ∧   R  Se  A     ∧   B  ∈  A     →   χ        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							frins3.1   ⊢   y  =  z    →    φ   ↔   ψ         
						
							2 
								
							 
							frins3.2   ⊢   y  =  B    →    φ   ↔   χ         
						
							3 
								
							 
							frins3.3   ⊢   y  ∈  A    →    ∀  z  ∈   Pred  R  A  y    ψ     →   φ         
						
							4 
								3  1 
							 
							frins2   ⊢    R  Fr  A    ∧   R  Se  A     →   ∀  y  ∈  A   φ          
						
							5 
								2 
							 
							rspcv   ⊢   B  ∈  A    →    ∀  y  ∈  A   φ     →   χ         
						
							6 
								4  5 
							 
							mpan9   ⊢     R  Fr  A    ∧   R  Se  A     ∧   B  ∈  A     →   χ