Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Well-Founded Induction
frins3
Metamath Proof Explorer
Description: Well-Founded Induction schema, using implicit substitution.
(Contributed by Scott Fenton , 6-Feb-2011) (Revised by Mario Carneiro , 26-Jun-2015)
Ref
Expression
Hypotheses
frins3.1
⊢ y = z → φ ↔ ψ
frins3.2
⊢ y = B → φ ↔ χ
frins3.3
⊢ y ∈ A → ∀ z ∈ Pred R A y ψ → φ
Assertion
frins3
⊢ R Fr A ∧ R Se A ∧ B ∈ A → χ
Proof
Step
Hyp
Ref
Expression
1
frins3.1
⊢ y = z → φ ↔ ψ
2
frins3.2
⊢ y = B → φ ↔ χ
3
frins3.3
⊢ y ∈ A → ∀ z ∈ Pred R A y ψ → φ
4
3 1
frins2
⊢ R Fr A ∧ R Se A → ∀ y ∈ A φ
5
2
rspcv
⊢ B ∈ A → ∀ y ∈ A φ → χ
6
4 5
mpan9
⊢ R Fr A ∧ R Se A ∧ B ∈ A → χ