Metamath Proof Explorer


Theorem frins3

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins3.1 y = z φ ψ
frins3.2 y = B φ χ
frins3.3 y A z Pred R A y ψ φ
Assertion frins3 R Fr A R Se A B A χ

Proof

Step Hyp Ref Expression
1 frins3.1 y = z φ ψ
2 frins3.2 y = B φ χ
3 frins3.3 y A z Pred R A y ψ φ
4 3 1 frins2 R Fr A R Se A y A φ
5 2 rspcv B A y A φ χ
6 4 5 mpan9 R Fr A R Se A B A χ