Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frins3.1 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
frins3.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
frins3.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | ||
Assertion | frins3 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frins3.1 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | frins3.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
3 | frins3.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
4 | 3 1 | frins2 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
5 | 2 | rspcv | ⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝜑 → 𝜒 ) ) |
6 | 4 5 | mpan9 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝐵 ∈ 𝐴 ) → 𝜒 ) |