Metamath Proof Explorer


Theorem frins3

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins3.1 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
frins3.2 ( 𝑦 = 𝐵 → ( 𝜑𝜒 ) )
frins3.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
Assertion frins3 ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ 𝐵𝐴 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 frins3.1 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
2 frins3.2 ( 𝑦 = 𝐵 → ( 𝜑𝜒 ) )
3 frins3.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
4 3 1 frins2 ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )
5 2 rspcv ( 𝐵𝐴 → ( ∀ 𝑦𝐴 𝜑𝜒 ) )
6 4 5 mpan9 ( ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) ∧ 𝐵𝐴 ) → 𝜒 )