Metamath Proof Explorer


Theorem frins2

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins2.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
frins2.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
Assertion frins2 ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 frins2.1 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
2 frins2.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
3 nfv 𝑦 𝜓
4 1 3 2 frins2f ( ( 𝑅 Fr 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )