Metamath Proof Explorer


Theorem frins2

Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses frins2.1 y A z Pred R A y ψ φ
frins2.3 y = z φ ψ
Assertion frins2 R Fr A R Se A y A φ

Proof

Step Hyp Ref Expression
1 frins2.1 y A z Pred R A y ψ φ
2 frins2.3 y = z φ ψ
3 nfv y ψ
4 1 3 2 frins2f R Fr A R Se A y A φ