Step |
Hyp |
Ref |
Expression |
1 |
|
ffun |
|- ( F : I --> NN0 -> Fun F ) |
2 |
|
simpl |
|- ( ( F e. V /\ F : I --> NN0 ) -> F e. V ) |
3 |
|
c0ex |
|- 0 e. _V |
4 |
|
funisfsupp |
|- ( ( Fun F /\ F e. V /\ 0 e. _V ) -> ( F finSupp 0 <-> ( F supp 0 ) e. Fin ) ) |
5 |
3 4
|
mp3an3 |
|- ( ( Fun F /\ F e. V ) -> ( F finSupp 0 <-> ( F supp 0 ) e. Fin ) ) |
6 |
1 2 5
|
syl2an2 |
|- ( ( F e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( F supp 0 ) e. Fin ) ) |
7 |
|
frnnn0suppg |
|- ( ( F e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |
8 |
7
|
eleq1d |
|- ( ( F e. V /\ F : I --> NN0 ) -> ( ( F supp 0 ) e. Fin <-> ( `' F " NN ) e. Fin ) ) |
9 |
6 8
|
bitrd |
|- ( ( F e. V /\ F : I --> NN0 ) -> ( F finSupp 0 <-> ( `' F " NN ) e. Fin ) ) |