Description: Version of frnnn0supp avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 5-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | frnnn0suppg | |- ( ( F e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex | |- 0 e. _V |
|
2 | frnsuppeqg | |- ( ( F e. V /\ 0 e. _V ) -> ( F : I --> NN0 -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) ) |
|
3 | 1 2 | mpan2 | |- ( F e. V -> ( F : I --> NN0 -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) ) |
4 | 3 | imp | |- ( ( F e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) |
5 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
6 | 5 | imaeq2i | |- ( `' F " NN ) = ( `' F " ( NN0 \ { 0 } ) ) |
7 | 4 6 | eqtr4di | |- ( ( F e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |