Step |
Hyp |
Ref |
Expression |
1 |
|
fsetex |
|- ( B e. _V -> { f | f : A --> B } e. _V ) |
2 |
|
fsetprcnex |
|- ( ( ( A e. V /\ A =/= (/) ) /\ B e/ _V ) -> { f | f : A --> B } e/ _V ) |
3 |
2
|
ex |
|- ( ( A e. V /\ A =/= (/) ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
4 |
|
df-nel |
|- ( B e/ _V <-> -. B e. _V ) |
5 |
|
df-nel |
|- ( { f | f : A --> B } e/ _V <-> -. { f | f : A --> B } e. _V ) |
6 |
3 4 5
|
3imtr3g |
|- ( ( A e. V /\ A =/= (/) ) -> ( -. B e. _V -> -. { f | f : A --> B } e. _V ) ) |
7 |
6
|
con4d |
|- ( ( A e. V /\ A =/= (/) ) -> ( { f | f : A --> B } e. _V -> B e. _V ) ) |
8 |
1 7
|
impbid2 |
|- ( ( A e. V /\ A =/= (/) ) -> ( B e. _V <-> { f | f : A --> B } e. _V ) ) |