Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
|- ( A =/= (/) <-> E. a a e. A ) |
2 |
|
feq1 |
|- ( f = m -> ( f : A --> B <-> m : A --> B ) ) |
3 |
2
|
cbvabv |
|- { f | f : A --> B } = { m | m : A --> B } |
4 |
|
fveq1 |
|- ( g = n -> ( g ` a ) = ( n ` a ) ) |
5 |
4
|
cbvmptv |
|- ( g e. { f | f : A --> B } |-> ( g ` a ) ) = ( n e. { f | f : A --> B } |-> ( n ` a ) ) |
6 |
3 5
|
fsetfocdm |
|- ( ( A e. V /\ a e. A ) -> ( g e. { f | f : A --> B } |-> ( g ` a ) ) : { f | f : A --> B } -onto-> B ) |
7 |
|
fornex |
|- ( { f | f : A --> B } e. _V -> ( ( g e. { f | f : A --> B } |-> ( g ` a ) ) : { f | f : A --> B } -onto-> B -> B e. _V ) ) |
8 |
6 7
|
syl5com |
|- ( ( A e. V /\ a e. A ) -> ( { f | f : A --> B } e. _V -> B e. _V ) ) |
9 |
8
|
nelcon3d |
|- ( ( A e. V /\ a e. A ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
10 |
9
|
expcom |
|- ( a e. A -> ( A e. V -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) ) |
11 |
10
|
exlimiv |
|- ( E. a a e. A -> ( A e. V -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) ) |
12 |
1 11
|
sylbi |
|- ( A =/= (/) -> ( A e. V -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) ) |
13 |
12
|
impcom |
|- ( ( A e. V /\ A =/= (/) ) -> ( B e/ _V -> { f | f : A --> B } e/ _V ) ) |
14 |
13
|
imp |
|- ( ( ( A e. V /\ A =/= (/) ) /\ B e/ _V ) -> { f | f : A --> B } e/ _V ) |