Metamath Proof Explorer


Theorem fsetprcnex

Description: The class of all functions from a nonempty set A into a proper class B is not a set. If one of the preconditions is not fufilled, then { f | f : A --> B } is a set, see fsetdmprc0 for A e/V , fset0 for A = (/) , and fsetex for B e. V , see also fsetexb . (Contributed by AV, 14-Sep-2024) (Proof shortened by BJ, 15-Sep-2024)

Ref Expression
Assertion fsetprcnex ( ( ( 𝐴𝑉𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓𝑓 : 𝐴𝐵 } ∉ V )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑎 𝑎𝐴 )
2 feq1 ( 𝑓 = 𝑚 → ( 𝑓 : 𝐴𝐵𝑚 : 𝐴𝐵 ) )
3 2 cbvabv { 𝑓𝑓 : 𝐴𝐵 } = { 𝑚𝑚 : 𝐴𝐵 }
4 fveq1 ( 𝑔 = 𝑛 → ( 𝑔𝑎 ) = ( 𝑛𝑎 ) )
5 4 cbvmptv ( 𝑔 ∈ { 𝑓𝑓 : 𝐴𝐵 } ↦ ( 𝑔𝑎 ) ) = ( 𝑛 ∈ { 𝑓𝑓 : 𝐴𝐵 } ↦ ( 𝑛𝑎 ) )
6 3 5 fsetfocdm ( ( 𝐴𝑉𝑎𝐴 ) → ( 𝑔 ∈ { 𝑓𝑓 : 𝐴𝐵 } ↦ ( 𝑔𝑎 ) ) : { 𝑓𝑓 : 𝐴𝐵 } –onto𝐵 )
7 fornex ( { 𝑓𝑓 : 𝐴𝐵 } ∈ V → ( ( 𝑔 ∈ { 𝑓𝑓 : 𝐴𝐵 } ↦ ( 𝑔𝑎 ) ) : { 𝑓𝑓 : 𝐴𝐵 } –onto𝐵𝐵 ∈ V ) )
8 6 7 syl5com ( ( 𝐴𝑉𝑎𝐴 ) → ( { 𝑓𝑓 : 𝐴𝐵 } ∈ V → 𝐵 ∈ V ) )
9 8 nelcon3d ( ( 𝐴𝑉𝑎𝐴 ) → ( 𝐵 ∉ V → { 𝑓𝑓 : 𝐴𝐵 } ∉ V ) )
10 9 expcom ( 𝑎𝐴 → ( 𝐴𝑉 → ( 𝐵 ∉ V → { 𝑓𝑓 : 𝐴𝐵 } ∉ V ) ) )
11 10 exlimiv ( ∃ 𝑎 𝑎𝐴 → ( 𝐴𝑉 → ( 𝐵 ∉ V → { 𝑓𝑓 : 𝐴𝐵 } ∉ V ) ) )
12 1 11 sylbi ( 𝐴 ≠ ∅ → ( 𝐴𝑉 → ( 𝐵 ∉ V → { 𝑓𝑓 : 𝐴𝐵 } ∉ V ) ) )
13 12 impcom ( ( 𝐴𝑉𝐴 ≠ ∅ ) → ( 𝐵 ∉ V → { 𝑓𝑓 : 𝐴𝐵 } ∉ V ) )
14 13 imp ( ( ( 𝐴𝑉𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓𝑓 : 𝐴𝐵 } ∉ V )