| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) ↔ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∧ ¬ 𝐵 ∈ V ) ) |
| 2 |
|
df-nel |
⊢ ( 𝐵 ∉ V ↔ ¬ 𝐵 ∈ V ) |
| 3 |
|
ioran |
⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ↔ ( ¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅ ) ) |
| 4 |
|
nnel |
⊢ ( ¬ 𝐴 ∉ V ↔ 𝐴 ∈ V ) |
| 5 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
| 6 |
5
|
bicomi |
⊢ ( ¬ 𝐴 = ∅ ↔ 𝐴 ≠ ∅ ) |
| 7 |
4 6
|
anbi12i |
⊢ ( ( ¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅ ) ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) ) |
| 8 |
3 7
|
bitri |
⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ↔ ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) ) |
| 9 |
|
fsetprcnex |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∉ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) |
| 10 |
9
|
ex |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 11 |
8 10
|
sylbi |
⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) → ( 𝐵 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 12 |
2 11
|
biimtrrid |
⊢ ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) → ( ¬ 𝐵 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) ) |
| 13 |
12
|
imp |
⊢ ( ( ¬ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∧ ¬ 𝐵 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) |
| 14 |
1 13
|
sylbi |
⊢ ( ¬ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ) |
| 15 |
|
df-nel |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∉ V ↔ ¬ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 16 |
14 15
|
sylib |
⊢ ( ¬ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) → ¬ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 17 |
16
|
con4i |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V → ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) ) |
| 18 |
|
df-3or |
⊢ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) ↔ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ) ∨ 𝐵 ∈ V ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V → ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) ) |
| 20 |
|
fsetdmprc0 |
⊢ ( 𝐴 ∉ V → { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ ) |
| 21 |
|
ffn |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) |
| 22 |
21
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 Fn 𝐴 } |
| 23 |
|
sseq0 |
⊢ ( ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 Fn 𝐴 } ∧ { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ∅ ) |
| 24 |
22 23
|
mpan |
⊢ ( { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ∅ ) |
| 25 |
|
0ex |
⊢ ∅ ∈ V |
| 26 |
24 25
|
eqeltrdi |
⊢ ( { 𝑓 ∣ 𝑓 Fn 𝐴 } = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 27 |
20 26
|
syl |
⊢ ( 𝐴 ∉ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 28 |
|
feq2 |
⊢ ( 𝐴 = ∅ → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ 𝑓 : ∅ ⟶ 𝐵 ) ) |
| 29 |
28
|
abbidv |
⊢ ( 𝐴 = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = { 𝑓 ∣ 𝑓 : ∅ ⟶ 𝐵 } ) |
| 30 |
|
fset0 |
⊢ { 𝑓 ∣ 𝑓 : ∅ ⟶ 𝐵 } = { ∅ } |
| 31 |
29 30
|
eqtrdi |
⊢ ( 𝐴 = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = { ∅ } ) |
| 32 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 33 |
31 32
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 34 |
|
fsetex |
⊢ ( 𝐵 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 35 |
27 33 34
|
3jaoi |
⊢ ( ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ) |
| 36 |
19 35
|
impbii |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ∈ V ↔ ( 𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V ) ) |