Metamath Proof Explorer


Theorem fsetexb

Description: The class of all functions from a class A into a class B is a set iff B is a set or A is not a set or A is empty. (Contributed by AV, 15-Sep-2024)

Ref Expression
Assertion fsetexb f|f:ABVAVA=BV

Proof

Step Hyp Ref Expression
1 ioran ¬AVA=BV¬AVA=¬BV
2 df-nel BV¬BV
3 ioran ¬AVA=¬AV¬A=
4 nnel ¬AVAV
5 df-ne A¬A=
6 5 bicomi ¬A=A
7 4 6 anbi12i ¬AV¬A=AVA
8 3 7 bitri ¬AVA=AVA
9 fsetprcnex AVABVf|f:ABV
10 9 ex AVABVf|f:ABV
11 8 10 sylbi ¬AVA=BVf|f:ABV
12 2 11 biimtrrid ¬AVA=¬BVf|f:ABV
13 12 imp ¬AVA=¬BVf|f:ABV
14 1 13 sylbi ¬AVA=BVf|f:ABV
15 df-nel f|f:ABV¬f|f:ABV
16 14 15 sylib ¬AVA=BV¬f|f:ABV
17 16 con4i f|f:ABVAVA=BV
18 df-3or AVA=BVAVA=BV
19 17 18 sylibr f|f:ABVAVA=BV
20 fsetdmprc0 AVf|fFnA=
21 ffn f:ABfFnA
22 21 ss2abi f|f:ABf|fFnA
23 sseq0 f|f:ABf|fFnAf|fFnA=f|f:AB=
24 22 23 mpan f|fFnA=f|f:AB=
25 0ex V
26 24 25 eqeltrdi f|fFnA=f|f:ABV
27 20 26 syl AVf|f:ABV
28 feq2 A=f:ABf:B
29 28 abbidv A=f|f:AB=f|f:B
30 fset0 f|f:B=
31 29 30 eqtrdi A=f|f:AB=
32 p0ex V
33 31 32 eqeltrdi A=f|f:ABV
34 fsetex BVf|f:ABV
35 27 33 34 3jaoi AVA=BVf|f:ABV
36 19 35 impbii f|f:ABVAVA=BV