| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0gsumfz.b |
|- B = ( Base ` G ) |
| 2 |
|
nn0gsumfz.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
nn0gsumfz.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
nn0gsumfz.f |
|- ( ph -> F e. ( B ^m NN0 ) ) |
| 5 |
|
fsfnn0gsumfsffz.s |
|- ( ph -> S e. NN0 ) |
| 6 |
|
fsfnn0gsumfsffz.h |
|- H = ( F |` ( 0 ... S ) ) |
| 7 |
6
|
oveq2i |
|- ( G gsum H ) = ( G gsum ( F |` ( 0 ... S ) ) ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> G e. CMnd ) |
| 9 |
|
nn0ex |
|- NN0 e. _V |
| 10 |
9
|
a1i |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> NN0 e. _V ) |
| 11 |
|
elmapi |
|- ( F e. ( B ^m NN0 ) -> F : NN0 --> B ) |
| 12 |
4 11
|
syl |
|- ( ph -> F : NN0 --> B ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> F : NN0 --> B ) |
| 14 |
2
|
fvexi |
|- .0. e. _V |
| 15 |
14
|
a1i |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> .0. e. _V ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> F e. ( B ^m NN0 ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> S e. NN0 ) |
| 18 |
|
simpr |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) |
| 19 |
15 16 17 18
|
suppssfz |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> ( F supp .0. ) C_ ( 0 ... S ) ) |
| 20 |
|
elmapfun |
|- ( F e. ( B ^m NN0 ) -> Fun F ) |
| 21 |
4 20
|
syl |
|- ( ph -> Fun F ) |
| 22 |
14
|
a1i |
|- ( ph -> .0. e. _V ) |
| 23 |
4 21 22
|
3jca |
|- ( ph -> ( F e. ( B ^m NN0 ) /\ Fun F /\ .0. e. _V ) ) |
| 24 |
|
fzfid |
|- ( ph -> ( 0 ... S ) e. Fin ) |
| 25 |
24
|
anim1i |
|- ( ( ph /\ ( F supp .0. ) C_ ( 0 ... S ) ) -> ( ( 0 ... S ) e. Fin /\ ( F supp .0. ) C_ ( 0 ... S ) ) ) |
| 26 |
|
suppssfifsupp |
|- ( ( ( F e. ( B ^m NN0 ) /\ Fun F /\ .0. e. _V ) /\ ( ( 0 ... S ) e. Fin /\ ( F supp .0. ) C_ ( 0 ... S ) ) ) -> F finSupp .0. ) |
| 27 |
23 25 26
|
syl2an2r |
|- ( ( ph /\ ( F supp .0. ) C_ ( 0 ... S ) ) -> F finSupp .0. ) |
| 28 |
19 27
|
syldan |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> F finSupp .0. ) |
| 29 |
1 2 8 10 13 19 28
|
gsumres |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> ( G gsum ( F |` ( 0 ... S ) ) ) = ( G gsum F ) ) |
| 30 |
7 29
|
eqtr2id |
|- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) -> ( G gsum F ) = ( G gsum H ) ) |
| 31 |
30
|
ex |
|- ( ph -> ( A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) -> ( G gsum F ) = ( G gsum H ) ) ) |