| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumclf.ph |
|- F/ k ph |
| 2 |
|
fsumclf.a |
|- ( ph -> A e. Fin ) |
| 3 |
|
fsumclf.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 4 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
| 5 |
|
nfcv |
|- F/_ j B |
| 6 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
| 7 |
4 5 6
|
cbvsum |
|- sum_ k e. A B = sum_ j e. A [_ j / k ]_ B |
| 8 |
7
|
a1i |
|- ( ph -> sum_ k e. A B = sum_ j e. A [_ j / k ]_ B ) |
| 9 |
|
nfv |
|- F/ k j e. A |
| 10 |
1 9
|
nfan |
|- F/ k ( ph /\ j e. A ) |
| 11 |
6
|
nfel1 |
|- F/ k [_ j / k ]_ B e. CC |
| 12 |
10 11
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
| 13 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
| 14 |
13
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
| 15 |
4
|
eleq1d |
|- ( k = j -> ( B e. CC <-> [_ j / k ]_ B e. CC ) ) |
| 16 |
14 15
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) ) ) |
| 17 |
12 16 3
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
| 18 |
2 17
|
fsumcl |
|- ( ph -> sum_ j e. A [_ j / k ]_ B e. CC ) |
| 19 |
8 18
|
eqeltrd |
|- ( ph -> sum_ k e. A B e. CC ) |