Step |
Hyp |
Ref |
Expression |
1 |
|
fthsect.b |
|- B = ( Base ` C ) |
2 |
|
fthsect.h |
|- H = ( Hom ` C ) |
3 |
|
fthsect.f |
|- ( ph -> F ( C Faith D ) G ) |
4 |
|
fthsect.x |
|- ( ph -> X e. B ) |
5 |
|
fthsect.y |
|- ( ph -> Y e. B ) |
6 |
|
fthsect.m |
|- ( ph -> M e. ( X H Y ) ) |
7 |
|
fthsect.n |
|- ( ph -> N e. ( Y H X ) ) |
8 |
|
fthsect.s |
|- S = ( Sect ` C ) |
9 |
|
fthsect.t |
|- T = ( Sect ` D ) |
10 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
11 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
12 |
|
fthfunc |
|- ( C Faith D ) C_ ( C Func D ) |
13 |
12
|
ssbri |
|- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
14 |
3 13
|
syl |
|- ( ph -> F ( C Func D ) G ) |
15 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
16 |
14 15
|
sylib |
|- ( ph -> <. F , G >. e. ( C Func D ) ) |
17 |
|
funcrcl |
|- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
18 |
16 17
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
19 |
18
|
simpld |
|- ( ph -> C e. Cat ) |
20 |
1 2 11 19 4 5 4 6 7
|
catcocl |
|- ( ph -> ( N ( <. X , Y >. ( comp ` C ) X ) M ) e. ( X H X ) ) |
21 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
22 |
1 2 21 19 4
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
23 |
1 2 10 3 4 4 20 22
|
fthi |
|- ( ph -> ( ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` C ) X ) M ) ) = ( ( X G X ) ` ( ( Id ` C ) ` X ) ) <-> ( N ( <. X , Y >. ( comp ` C ) X ) M ) = ( ( Id ` C ) ` X ) ) ) |
24 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
25 |
1 2 11 24 14 4 5 4 6 7
|
funcco |
|- ( ph -> ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` C ) X ) M ) ) = ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) |
26 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
27 |
1 21 26 14 4
|
funcid |
|- ( ph -> ( ( X G X ) ` ( ( Id ` C ) ` X ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) |
28 |
25 27
|
eqeq12d |
|- ( ph -> ( ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` C ) X ) M ) ) = ( ( X G X ) ` ( ( Id ` C ) ` X ) ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) ) |
29 |
23 28
|
bitr3d |
|- ( ph -> ( ( N ( <. X , Y >. ( comp ` C ) X ) M ) = ( ( Id ` C ) ` X ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) ) |
30 |
1 2 11 21 8 19 4 5 6 7
|
issect2 |
|- ( ph -> ( M ( X S Y ) N <-> ( N ( <. X , Y >. ( comp ` C ) X ) M ) = ( ( Id ` C ) ` X ) ) ) |
31 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
32 |
18
|
simprd |
|- ( ph -> D e. Cat ) |
33 |
1 31 14
|
funcf1 |
|- ( ph -> F : B --> ( Base ` D ) ) |
34 |
33 4
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
35 |
33 5
|
ffvelrnd |
|- ( ph -> ( F ` Y ) e. ( Base ` D ) ) |
36 |
1 2 10 14 4 5
|
funcf2 |
|- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) ) |
37 |
36 6
|
ffvelrnd |
|- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) ) |
38 |
1 2 10 14 5 4
|
funcf2 |
|- ( ph -> ( Y G X ) : ( Y H X ) --> ( ( F ` Y ) ( Hom ` D ) ( F ` X ) ) ) |
39 |
38 7
|
ffvelrnd |
|- ( ph -> ( ( Y G X ) ` N ) e. ( ( F ` Y ) ( Hom ` D ) ( F ` X ) ) ) |
40 |
31 10 24 26 9 32 34 35 37 39
|
issect2 |
|- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) ) |
41 |
29 30 40
|
3bitr4d |
|- ( ph -> ( M ( X S Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |