Metamath Proof Explorer


Theorem fucorid2

Description: Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p
|- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P )
fucolid.i
|- I = ( Id ` Q )
fucorid.q
|- Q = ( C FuncCat D )
fucorid.a
|- ( ph -> A e. ( G ( D Nat E ) H ) )
fucorid.f
|- ( ph -> F e. ( C Func D ) )
Assertion fucorid2
|- ( ph -> ( A ( <. G , F >. P <. H , F >. ) ( I ` F ) ) = ( A o. ( 1st ` F ) ) )

Proof

Step Hyp Ref Expression
1 fucolid.p
 |-  ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P )
2 fucolid.i
 |-  I = ( Id ` Q )
3 fucorid.q
 |-  Q = ( C FuncCat D )
4 fucorid.a
 |-  ( ph -> A e. ( G ( D Nat E ) H ) )
5 fucorid.f
 |-  ( ph -> F e. ( C Func D ) )
6 1 2 3 4 5 fucorid
 |-  ( ph -> ( A ( <. G , F >. P <. H , F >. ) ( I ` F ) ) = ( x e. ( Base ` C ) |-> ( A ` ( ( 1st ` F ) ` x ) ) ) )
7 eqid
 |-  ( D Nat E ) = ( D Nat E )
8 7 4 nat1st2nd
 |-  ( ph -> A e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D Nat E ) <. ( 1st ` H ) , ( 2nd ` H ) >. ) )
9 eqid
 |-  ( Base ` D ) = ( Base ` D )
10 7 8 9 natfn
 |-  ( ph -> A Fn ( Base ` D ) )
11 dffn2
 |-  ( A Fn ( Base ` D ) <-> A : ( Base ` D ) --> _V )
12 10 11 sylib
 |-  ( ph -> A : ( Base ` D ) --> _V )
13 eqid
 |-  ( Base ` C ) = ( Base ` C )
14 relfunc
 |-  Rel ( C Func D )
15 1st2ndbr
 |-  ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )
16 14 5 15 sylancr
 |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )
17 13 9 16 funcf1
 |-  ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) )
18 fcompt
 |-  ( ( A : ( Base ` D ) --> _V /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( A o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( A ` ( ( 1st ` F ) ` x ) ) ) )
19 12 17 18 syl2anc
 |-  ( ph -> ( A o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( A ` ( ( 1st ` F ) ` x ) ) ) )
20 6 19 eqtr4d
 |-  ( ph -> ( A ( <. G , F >. P <. H , F >. ) ( I ` F ) ) = ( A o. ( 1st ` F ) ) )