| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucolid.p |
|- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) |
| 2 |
|
fucolid.i |
|- I = ( Id ` Q ) |
| 3 |
|
fucorid.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
fucorid.a |
|- ( ph -> A e. ( G ( D Nat E ) H ) ) |
| 5 |
|
fucorid.f |
|- ( ph -> F e. ( C Func D ) ) |
| 6 |
1 2 3 4 5
|
fucorid |
|- ( ph -> ( A ( <. G , F >. P <. H , F >. ) ( I ` F ) ) = ( x e. ( Base ` C ) |-> ( A ` ( ( 1st ` F ) ` x ) ) ) ) |
| 7 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 8 |
7 4
|
nat1st2nd |
|- ( ph -> A e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( D Nat E ) <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 10 |
7 8 9
|
natfn |
|- ( ph -> A Fn ( Base ` D ) ) |
| 11 |
|
dffn2 |
|- ( A Fn ( Base ` D ) <-> A : ( Base ` D ) --> _V ) |
| 12 |
10 11
|
sylib |
|- ( ph -> A : ( Base ` D ) --> _V ) |
| 13 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 14 |
|
relfunc |
|- Rel ( C Func D ) |
| 15 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 16 |
14 5 15
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 17 |
13 9 16
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 18 |
|
fcompt |
|- ( ( A : ( Base ` D ) --> _V /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( A o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( A ` ( ( 1st ` F ) ` x ) ) ) ) |
| 19 |
12 17 18
|
syl2anc |
|- ( ph -> ( A o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( A ` ( ( 1st ` F ) ` x ) ) ) ) |
| 20 |
6 19
|
eqtr4d |
|- ( ph -> ( A ( <. G , F >. P <. H , F >. ) ( I ` F ) ) = ( A o. ( 1st ` F ) ) ) |