Metamath Proof Explorer


Theorem fucorid2

Description: Pre-composing a natural transformation with the identity natural transformation of a functor is pre-composing it with the object part of the functor. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) = 𝑃 )
fucolid.i 𝐼 = ( Id ‘ 𝑄 )
fucorid.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
fucorid.a ( 𝜑𝐴 ∈ ( 𝐺 ( 𝐷 Nat 𝐸 ) 𝐻 ) )
fucorid.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
Assertion fucorid2 ( 𝜑 → ( 𝐴 ( ⟨ 𝐺 , 𝐹𝑃𝐻 , 𝐹 ⟩ ) ( 𝐼𝐹 ) ) = ( 𝐴 ∘ ( 1st𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 fucolid.p ( 𝜑 → ( 2nd ‘ ( ⟨ 𝐶 , 𝐷 ⟩ ∘F 𝐸 ) ) = 𝑃 )
2 fucolid.i 𝐼 = ( Id ‘ 𝑄 )
3 fucorid.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
4 fucorid.a ( 𝜑𝐴 ∈ ( 𝐺 ( 𝐷 Nat 𝐸 ) 𝐻 ) )
5 fucorid.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
6 1 2 3 4 5 fucorid ( 𝜑 → ( 𝐴 ( ⟨ 𝐺 , 𝐹𝑃𝐻 , 𝐹 ⟩ ) ( 𝐼𝐹 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝐴 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
7 eqid ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 )
8 7 4 nat1st2nd ( 𝜑𝐴 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐷 Nat 𝐸 ) ⟨ ( 1st𝐻 ) , ( 2nd𝐻 ) ⟩ ) )
9 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
10 7 8 9 natfn ( 𝜑𝐴 Fn ( Base ‘ 𝐷 ) )
11 dffn2 ( 𝐴 Fn ( Base ‘ 𝐷 ) ↔ 𝐴 : ( Base ‘ 𝐷 ) ⟶ V )
12 10 11 sylib ( 𝜑𝐴 : ( Base ‘ 𝐷 ) ⟶ V )
13 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
14 relfunc Rel ( 𝐶 Func 𝐷 )
15 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
16 14 5 15 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
17 13 9 16 funcf1 ( 𝜑 → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
18 fcompt ( ( 𝐴 : ( Base ‘ 𝐷 ) ⟶ V ∧ ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) → ( 𝐴 ∘ ( 1st𝐹 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝐴 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
19 12 17 18 syl2anc ( 𝜑 → ( 𝐴 ∘ ( 1st𝐹 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝐴 ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
20 6 19 eqtr4d ( 𝜑 → ( 𝐴 ( ⟨ 𝐺 , 𝐹𝑃𝐻 , 𝐹 ⟩ ) ( 𝐼𝐹 ) ) = ( 𝐴 ∘ ( 1st𝐹 ) ) )