Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfull.b | |- B = ( Base ` C ) |
|
| isfull.j | |- J = ( Hom ` D ) |
||
| isfull.h | |- H = ( Hom ` C ) |
||
| fullfo.f | |- ( ph -> F ( C Full D ) G ) |
||
| fullfo.x | |- ( ph -> X e. B ) |
||
| fullfo.y | |- ( ph -> Y e. B ) |
||
| fulli.r | |- ( ph -> R e. ( ( F ` X ) J ( F ` Y ) ) ) |
||
| Assertion | fulli | |- ( ph -> E. f e. ( X H Y ) R = ( ( X G Y ) ` f ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfull.b | |- B = ( Base ` C ) |
|
| 2 | isfull.j | |- J = ( Hom ` D ) |
|
| 3 | isfull.h | |- H = ( Hom ` C ) |
|
| 4 | fullfo.f | |- ( ph -> F ( C Full D ) G ) |
|
| 5 | fullfo.x | |- ( ph -> X e. B ) |
|
| 6 | fullfo.y | |- ( ph -> Y e. B ) |
|
| 7 | fulli.r | |- ( ph -> R e. ( ( F ` X ) J ( F ` Y ) ) ) |
|
| 8 | 1 2 3 4 5 6 | fullfo | |- ( ph -> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) |
| 9 | foelrn | |- ( ( ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) /\ R e. ( ( F ` X ) J ( F ` Y ) ) ) -> E. f e. ( X H Y ) R = ( ( X G Y ) ` f ) ) |
|
| 10 | 8 7 9 | syl2anc | |- ( ph -> E. f e. ( X H Y ) R = ( ( X G Y ) ` f ) ) |