Metamath Proof Explorer


Theorem fulli

Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfull.b
|- B = ( Base ` C )
isfull.j
|- J = ( Hom ` D )
isfull.h
|- H = ( Hom ` C )
fullfo.f
|- ( ph -> F ( C Full D ) G )
fullfo.x
|- ( ph -> X e. B )
fullfo.y
|- ( ph -> Y e. B )
fulli.r
|- ( ph -> R e. ( ( F ` X ) J ( F ` Y ) ) )
Assertion fulli
|- ( ph -> E. f e. ( X H Y ) R = ( ( X G Y ) ` f ) )

Proof

Step Hyp Ref Expression
1 isfull.b
 |-  B = ( Base ` C )
2 isfull.j
 |-  J = ( Hom ` D )
3 isfull.h
 |-  H = ( Hom ` C )
4 fullfo.f
 |-  ( ph -> F ( C Full D ) G )
5 fullfo.x
 |-  ( ph -> X e. B )
6 fullfo.y
 |-  ( ph -> Y e. B )
7 fulli.r
 |-  ( ph -> R e. ( ( F ` X ) J ( F ` Y ) ) )
8 1 2 3 4 5 6 fullfo
 |-  ( ph -> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) )
9 foelrn
 |-  ( ( ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) /\ R e. ( ( F ` X ) J ( F ` Y ) ) ) -> E. f e. ( X H Y ) R = ( ( X G Y ) ` f ) )
10 8 7 9 syl2anc
 |-  ( ph -> E. f e. ( X H Y ) R = ( ( X G Y ) ` f ) )