Metamath Proof Explorer


Theorem fulli

Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfull.b B=BaseC
isfull.j J=HomD
isfull.h H=HomC
fullfo.f φFCFullDG
fullfo.x φXB
fullfo.y φYB
fulli.r φRFXJFY
Assertion fulli φfXHYR=XGYf

Proof

Step Hyp Ref Expression
1 isfull.b B=BaseC
2 isfull.j J=HomD
3 isfull.h H=HomC
4 fullfo.f φFCFullDG
5 fullfo.x φXB
6 fullfo.y φYB
7 fulli.r φRFXJFY
8 1 2 3 4 5 6 fullfo φXGY:XHYontoFXJFY
9 foelrn XGY:XHYontoFXJFYRFXJFYfXHYR=XGYf
10 8 7 9 syl2anc φfXHYR=XGYf