Metamath Proof Explorer


Theorem funcestrcsetclem4

Description: Lemma 4 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e
|- E = ( ExtStrCat ` U )
funcestrcsetc.s
|- S = ( SetCat ` U )
funcestrcsetc.b
|- B = ( Base ` E )
funcestrcsetc.c
|- C = ( Base ` S )
funcestrcsetc.u
|- ( ph -> U e. WUni )
funcestrcsetc.f
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) )
funcestrcsetc.g
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) )
Assertion funcestrcsetclem4
|- ( ph -> G Fn ( B X. B ) )

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e
 |-  E = ( ExtStrCat ` U )
2 funcestrcsetc.s
 |-  S = ( SetCat ` U )
3 funcestrcsetc.b
 |-  B = ( Base ` E )
4 funcestrcsetc.c
 |-  C = ( Base ` S )
5 funcestrcsetc.u
 |-  ( ph -> U e. WUni )
6 funcestrcsetc.f
 |-  ( ph -> F = ( x e. B |-> ( Base ` x ) ) )
7 funcestrcsetc.g
 |-  ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) )
8 eqid
 |-  ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) )
9 ovex
 |-  ( ( Base ` y ) ^m ( Base ` x ) ) e. _V
10 resiexg
 |-  ( ( ( Base ` y ) ^m ( Base ` x ) ) e. _V -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V )
11 9 10 ax-mp
 |-  ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V
12 8 11 fnmpoi
 |-  ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) Fn ( B X. B )
13 7 fneq1d
 |-  ( ph -> ( G Fn ( B X. B ) <-> ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) Fn ( B X. B ) ) )
14 12 13 mpbiri
 |-  ( ph -> G Fn ( B X. B ) )