Metamath Proof Explorer


Theorem funcestrcsetclem4

Description: Lemma 4 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
Assertion funcestrcsetclem4 φGFnB×B

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 eqid xB,yBIBaseyBasex=xB,yBIBaseyBasex
9 ovex BaseyBasexV
10 resiexg BaseyBasexVIBaseyBasexV
11 9 10 ax-mp IBaseyBasexV
12 8 11 fnmpoi xB,yBIBaseyBasexFnB×B
13 7 fneq1d φGFnB×BxB,yBIBaseyBasexFnB×B
14 12 13 mpbiri φGFnB×B