Metamath Proof Explorer


Theorem funcestrcsetclem4

Description: Lemma 4 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
funcestrcsetc.g φ G = x B , y B I Base y Base x
Assertion funcestrcsetclem4 φ G Fn B × B

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 funcestrcsetc.g φ G = x B , y B I Base y Base x
8 eqid x B , y B I Base y Base x = x B , y B I Base y Base x
9 ovex Base y Base x V
10 resiexg Base y Base x V I Base y Base x V
11 9 10 ax-mp I Base y Base x V
12 8 11 fnmpoi x B , y B I Base y Base x Fn B × B
13 7 fneq1d φ G Fn B × B x B , y B I Base y Base x Fn B × B
14 12 13 mpbiri φ G Fn B × B