Database
BASIC CATEGORY THEORY
Examples of categories
The category of extensible structures
funcestrcsetclem4
Next ⟩
funcestrcsetclem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcestrcsetclem4
Description:
Lemma 4 for
funcestrcsetc
.
(Contributed by
AV
, 22-Mar-2020)
Ref
Expression
Hypotheses
funcestrcsetc.e
⊢
E
=
ExtStrCat
⁡
U
funcestrcsetc.s
⊢
S
=
SetCat
⁡
U
funcestrcsetc.b
⊢
B
=
Base
E
funcestrcsetc.c
⊢
C
=
Base
S
funcestrcsetc.u
⊢
φ
→
U
∈
WUni
funcestrcsetc.f
⊢
φ
→
F
=
x
∈
B
⟼
Base
x
funcestrcsetc.g
⊢
φ
→
G
=
x
∈
B
,
y
∈
B
⟼
I
↾
Base
y
Base
x
Assertion
funcestrcsetclem4
⊢
φ
→
G
Fn
B
×
B
Proof
Step
Hyp
Ref
Expression
1
funcestrcsetc.e
⊢
E
=
ExtStrCat
⁡
U
2
funcestrcsetc.s
⊢
S
=
SetCat
⁡
U
3
funcestrcsetc.b
⊢
B
=
Base
E
4
funcestrcsetc.c
⊢
C
=
Base
S
5
funcestrcsetc.u
⊢
φ
→
U
∈
WUni
6
funcestrcsetc.f
⊢
φ
→
F
=
x
∈
B
⟼
Base
x
7
funcestrcsetc.g
⊢
φ
→
G
=
x
∈
B
,
y
∈
B
⟼
I
↾
Base
y
Base
x
8
eqid
⊢
x
∈
B
,
y
∈
B
⟼
I
↾
Base
y
Base
x
=
x
∈
B
,
y
∈
B
⟼
I
↾
Base
y
Base
x
9
ovex
⊢
Base
y
Base
x
∈
V
10
resiexg
⊢
Base
y
Base
x
∈
V
→
I
↾
Base
y
Base
x
∈
V
11
9
10
ax-mp
⊢
I
↾
Base
y
Base
x
∈
V
12
8
11
fnmpoi
⊢
x
∈
B
,
y
∈
B
⟼
I
↾
Base
y
Base
x
Fn
B
×
B
13
7
fneq1d
⊢
φ
→
G
Fn
B
×
B
↔
x
∈
B
,
y
∈
B
⟼
I
↾
Base
y
Base
x
Fn
B
×
B
14
12
13
mpbiri
⊢
φ
→
G
Fn
B
×
B