Metamath Proof Explorer


Theorem funcestrcsetc

Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
funcestrcsetc.g φ G = x B , y B I Base y Base x
Assertion funcestrcsetc φ F E Func S G

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 funcestrcsetc.g φ G = x B , y B I Base y Base x
8 eqid Hom E = Hom E
9 eqid Hom S = Hom S
10 eqid Id E = Id E
11 eqid Id S = Id S
12 eqid comp E = comp E
13 eqid comp S = comp S
14 1 estrccat U WUni E Cat
15 5 14 syl φ E Cat
16 2 setccat U WUni S Cat
17 5 16 syl φ S Cat
18 1 2 3 4 5 6 funcestrcsetclem3 φ F : B C
19 1 2 3 4 5 6 7 funcestrcsetclem4 φ G Fn B × B
20 1 2 3 4 5 6 7 funcestrcsetclem8 φ a B b B a G b : a Hom E b F a Hom S F b
21 1 2 3 4 5 6 7 funcestrcsetclem7 φ a B a G a Id E a = Id S F a
22 1 2 3 4 5 6 7 funcestrcsetclem9 φ a B b B c B h a Hom E b k b Hom E c a G c k a b comp E c h = b G c k F a F b comp S F c a G b h
23 3 4 8 9 10 11 12 13 15 17 18 19 20 21 22 isfuncd φ F E Func S G