Metamath Proof Explorer


Theorem funcestrcsetc

Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
Assertion funcestrcsetc φFEFuncSG

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 eqid HomE=HomE
9 eqid HomS=HomS
10 eqid IdE=IdE
11 eqid IdS=IdS
12 eqid compE=compE
13 eqid compS=compS
14 1 estrccat UWUniECat
15 5 14 syl φECat
16 2 setccat UWUniSCat
17 5 16 syl φSCat
18 1 2 3 4 5 6 funcestrcsetclem3 φF:BC
19 1 2 3 4 5 6 7 funcestrcsetclem4 φGFnB×B
20 1 2 3 4 5 6 7 funcestrcsetclem8 φaBbBaGb:aHomEbFaHomSFb
21 1 2 3 4 5 6 7 funcestrcsetclem7 φaBaGaIdEa=IdSFa
22 1 2 3 4 5 6 7 funcestrcsetclem9 φaBbBcBhaHomEbkbHomEcaGckabcompEch=bGckFaFbcompSFcaGbh
23 3 4 8 9 10 11 12 13 15 17 18 19 20 21 22 isfuncd φFEFuncSG