Metamath Proof Explorer


Theorem fthestrcsetc

Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
Assertion fthestrcsetc φFEFaithSG

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 1 2 3 4 5 6 7 funcestrcsetc φFEFuncSG
9 1 2 3 4 5 6 7 funcestrcsetclem8 φaBbBaGb:aHomEbFaHomSFb
10 5 adantr φaBbBUWUni
11 eqid HomE=HomE
12 1 5 estrcbas φU=BaseE
13 3 12 eqtr4id φB=U
14 13 eleq2d φaBaU
15 14 biimpcd aBφaU
16 15 adantr aBbBφaU
17 16 impcom φaBbBaU
18 13 eleq2d φbBbU
19 18 biimpcd bBφbU
20 19 adantl aBbBφbU
21 20 impcom φaBbBbU
22 eqid Basea=Basea
23 eqid Baseb=Baseb
24 1 10 11 17 21 22 23 estrchom φaBbBaHomEb=BasebBasea
25 24 eleq2d φaBbBhaHomEbhBasebBasea
26 1 2 3 4 5 6 7 22 23 funcestrcsetclem6 φaBbBhBasebBaseaaGbh=h
27 26 3expia φaBbBhBasebBaseaaGbh=h
28 25 27 sylbid φaBbBhaHomEbaGbh=h
29 28 com12 haHomEbφaBbBaGbh=h
30 29 adantr haHomEbkaHomEbφaBbBaGbh=h
31 30 impcom φaBbBhaHomEbkaHomEbaGbh=h
32 24 eleq2d φaBbBkaHomEbkBasebBasea
33 1 2 3 4 5 6 7 22 23 funcestrcsetclem6 φaBbBkBasebBaseaaGbk=k
34 33 3expia φaBbBkBasebBaseaaGbk=k
35 32 34 sylbid φaBbBkaHomEbaGbk=k
36 35 com12 kaHomEbφaBbBaGbk=k
37 36 adantl haHomEbkaHomEbφaBbBaGbk=k
38 37 impcom φaBbBhaHomEbkaHomEbaGbk=k
39 31 38 eqeq12d φaBbBhaHomEbkaHomEbaGbh=aGbkh=k
40 39 biimpd φaBbBhaHomEbkaHomEbaGbh=aGbkh=k
41 40 ralrimivva φaBbBhaHomEbkaHomEbaGbh=aGbkh=k
42 dff13 aGb:aHomEb1-1FaHomSFbaGb:aHomEbFaHomSFbhaHomEbkaHomEbaGbh=aGbkh=k
43 9 41 42 sylanbrc φaBbBaGb:aHomEb1-1FaHomSFb
44 43 ralrimivva φaBbBaGb:aHomEb1-1FaHomSFb
45 eqid HomS=HomS
46 3 11 45 isfth2 FEFaithSGFEFuncSGaBbBaGb:aHomEb1-1FaHomSFb
47 8 44 46 sylanbrc φFEFaithSG