Metamath Proof Explorer


Theorem funcestrcsetclem6

Description: Lemma 6 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
funcestrcsetc.g φ G = x B , y B I Base y Base x
funcestrcsetc.m M = Base X
funcestrcsetc.n N = Base Y
Assertion funcestrcsetclem6 φ X B Y B H N M X G Y H = H

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 funcestrcsetc.g φ G = x B , y B I Base y Base x
8 funcestrcsetc.m M = Base X
9 funcestrcsetc.n N = Base Y
10 1 2 3 4 5 6 7 8 9 funcestrcsetclem5 φ X B Y B X G Y = I N M
11 10 3adant3 φ X B Y B H N M X G Y = I N M
12 11 fveq1d φ X B Y B H N M X G Y H = I N M H
13 fvresi H N M I N M H = H
14 13 3ad2ant3 φ X B Y B H N M I N M H = H
15 12 14 eqtrd φ X B Y B H N M X G Y H = H