Metamath Proof Explorer


Theorem funcestrcsetclem6

Description: Lemma 6 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
funcestrcsetc.m M=BaseX
funcestrcsetc.n N=BaseY
Assertion funcestrcsetclem6 φXBYBHNMXGYH=H

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 funcestrcsetc.m M=BaseX
9 funcestrcsetc.n N=BaseY
10 1 2 3 4 5 6 7 8 9 funcestrcsetclem5 φXBYBXGY=INM
11 10 3adant3 φXBYBHNMXGY=INM
12 11 fveq1d φXBYBHNMXGYH=INMH
13 fvresi HNMINMH=H
14 13 3ad2ant3 φXBYBHNMINMH=H
15 12 14 eqtrd φXBYBHNMXGYH=H