Metamath Proof Explorer


Theorem funcestrcsetclem6

Description: Lemma 6 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e
|- E = ( ExtStrCat ` U )
funcestrcsetc.s
|- S = ( SetCat ` U )
funcestrcsetc.b
|- B = ( Base ` E )
funcestrcsetc.c
|- C = ( Base ` S )
funcestrcsetc.u
|- ( ph -> U e. WUni )
funcestrcsetc.f
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) )
funcestrcsetc.g
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) )
funcestrcsetc.m
|- M = ( Base ` X )
funcestrcsetc.n
|- N = ( Base ` Y )
Assertion funcestrcsetclem6
|- ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( X G Y ) ` H ) = H )

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e
 |-  E = ( ExtStrCat ` U )
2 funcestrcsetc.s
 |-  S = ( SetCat ` U )
3 funcestrcsetc.b
 |-  B = ( Base ` E )
4 funcestrcsetc.c
 |-  C = ( Base ` S )
5 funcestrcsetc.u
 |-  ( ph -> U e. WUni )
6 funcestrcsetc.f
 |-  ( ph -> F = ( x e. B |-> ( Base ` x ) ) )
7 funcestrcsetc.g
 |-  ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) )
8 funcestrcsetc.m
 |-  M = ( Base ` X )
9 funcestrcsetc.n
 |-  N = ( Base ` Y )
10 1 2 3 4 5 6 7 8 9 funcestrcsetclem5
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X G Y ) = ( _I |` ( N ^m M ) ) )
11 10 3adant3
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( X G Y ) = ( _I |` ( N ^m M ) ) )
12 11 fveq1d
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( X G Y ) ` H ) = ( ( _I |` ( N ^m M ) ) ` H ) )
13 fvresi
 |-  ( H e. ( N ^m M ) -> ( ( _I |` ( N ^m M ) ) ` H ) = H )
14 13 3ad2ant3
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( _I |` ( N ^m M ) ) ` H ) = H )
15 12 14 eqtrd
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) /\ H e. ( N ^m M ) ) -> ( ( X G Y ) ` H ) = H )