Step |
Hyp |
Ref |
Expression |
1 |
|
funcestrcsetc.e |
|- E = ( ExtStrCat ` U ) |
2 |
|
funcestrcsetc.s |
|- S = ( SetCat ` U ) |
3 |
|
funcestrcsetc.b |
|- B = ( Base ` E ) |
4 |
|
funcestrcsetc.c |
|- C = ( Base ` S ) |
5 |
|
funcestrcsetc.u |
|- ( ph -> U e. WUni ) |
6 |
|
funcestrcsetc.f |
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
7 |
|
funcestrcsetc.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
8 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
9 |
1 2 3 4 5 6 7 8 8
|
funcestrcsetclem5 |
|- ( ( ph /\ ( X e. B /\ X e. B ) ) -> ( X G X ) = ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ) |
10 |
9
|
anabsan2 |
|- ( ( ph /\ X e. B ) -> ( X G X ) = ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ) |
11 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
12 |
5
|
adantr |
|- ( ( ph /\ X e. B ) -> U e. WUni ) |
13 |
1 5
|
estrcbas |
|- ( ph -> U = ( Base ` E ) ) |
14 |
3 13
|
eqtr4id |
|- ( ph -> B = U ) |
15 |
14
|
eleq2d |
|- ( ph -> ( X e. B <-> X e. U ) ) |
16 |
15
|
biimpa |
|- ( ( ph /\ X e. B ) -> X e. U ) |
17 |
1 11 12 16
|
estrcid |
|- ( ( ph /\ X e. B ) -> ( ( Id ` E ) ` X ) = ( _I |` ( Base ` X ) ) ) |
18 |
10 17
|
fveq12d |
|- ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) ) |
19 |
|
fvex |
|- ( Base ` X ) e. _V |
20 |
19 19
|
pm3.2i |
|- ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) |
21 |
20
|
a1i |
|- ( ( ph /\ X e. B ) -> ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) ) |
22 |
|
f1oi |
|- ( _I |` ( Base ` X ) ) : ( Base ` X ) -1-1-onto-> ( Base ` X ) |
23 |
|
f1of |
|- ( ( _I |` ( Base ` X ) ) : ( Base ` X ) -1-1-onto-> ( Base ` X ) -> ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) ) |
24 |
22 23
|
ax-mp |
|- ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) |
25 |
|
elmapg |
|- ( ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) -> ( ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) <-> ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) ) ) |
26 |
24 25
|
mpbiri |
|- ( ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) -> ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) ) |
27 |
|
fvresi |
|- ( ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) -> ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) = ( _I |` ( Base ` X ) ) ) |
28 |
21 26 27
|
3syl |
|- ( ( ph /\ X e. B ) -> ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) = ( _I |` ( Base ` X ) ) ) |
29 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
|- ( ( ph /\ X e. B ) -> ( F ` X ) = ( Base ` X ) ) |
30 |
29
|
fveq2d |
|- ( ( ph /\ X e. B ) -> ( ( Id ` S ) ` ( F ` X ) ) = ( ( Id ` S ) ` ( Base ` X ) ) ) |
31 |
|
eqid |
|- ( Id ` S ) = ( Id ` S ) |
32 |
1 3 5
|
estrcbasbas |
|- ( ( ph /\ X e. B ) -> ( Base ` X ) e. U ) |
33 |
2 31 12 32
|
setcid |
|- ( ( ph /\ X e. B ) -> ( ( Id ` S ) ` ( Base ` X ) ) = ( _I |` ( Base ` X ) ) ) |
34 |
30 33
|
eqtr2d |
|- ( ( ph /\ X e. B ) -> ( _I |` ( Base ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |
35 |
18 28 34
|
3eqtrd |
|- ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |