Metamath Proof Explorer


Theorem funcestrcsetclem7

Description: Lemma 7 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e
|- E = ( ExtStrCat ` U )
funcestrcsetc.s
|- S = ( SetCat ` U )
funcestrcsetc.b
|- B = ( Base ` E )
funcestrcsetc.c
|- C = ( Base ` S )
funcestrcsetc.u
|- ( ph -> U e. WUni )
funcestrcsetc.f
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) )
funcestrcsetc.g
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) )
Assertion funcestrcsetclem7
|- ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) )

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e
 |-  E = ( ExtStrCat ` U )
2 funcestrcsetc.s
 |-  S = ( SetCat ` U )
3 funcestrcsetc.b
 |-  B = ( Base ` E )
4 funcestrcsetc.c
 |-  C = ( Base ` S )
5 funcestrcsetc.u
 |-  ( ph -> U e. WUni )
6 funcestrcsetc.f
 |-  ( ph -> F = ( x e. B |-> ( Base ` x ) ) )
7 funcestrcsetc.g
 |-  ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) )
8 eqid
 |-  ( Base ` X ) = ( Base ` X )
9 1 2 3 4 5 6 7 8 8 funcestrcsetclem5
 |-  ( ( ph /\ ( X e. B /\ X e. B ) ) -> ( X G X ) = ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) )
10 9 anabsan2
 |-  ( ( ph /\ X e. B ) -> ( X G X ) = ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) )
11 eqid
 |-  ( Id ` E ) = ( Id ` E )
12 5 adantr
 |-  ( ( ph /\ X e. B ) -> U e. WUni )
13 1 5 estrcbas
 |-  ( ph -> U = ( Base ` E ) )
14 3 13 eqtr4id
 |-  ( ph -> B = U )
15 14 eleq2d
 |-  ( ph -> ( X e. B <-> X e. U ) )
16 15 biimpa
 |-  ( ( ph /\ X e. B ) -> X e. U )
17 1 11 12 16 estrcid
 |-  ( ( ph /\ X e. B ) -> ( ( Id ` E ) ` X ) = ( _I |` ( Base ` X ) ) )
18 10 17 fveq12d
 |-  ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) )
19 fvex
 |-  ( Base ` X ) e. _V
20 19 19 pm3.2i
 |-  ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V )
21 20 a1i
 |-  ( ( ph /\ X e. B ) -> ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) )
22 f1oi
 |-  ( _I |` ( Base ` X ) ) : ( Base ` X ) -1-1-onto-> ( Base ` X )
23 f1of
 |-  ( ( _I |` ( Base ` X ) ) : ( Base ` X ) -1-1-onto-> ( Base ` X ) -> ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) )
24 22 23 ax-mp
 |-  ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X )
25 elmapg
 |-  ( ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) -> ( ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) <-> ( _I |` ( Base ` X ) ) : ( Base ` X ) --> ( Base ` X ) ) )
26 24 25 mpbiri
 |-  ( ( ( Base ` X ) e. _V /\ ( Base ` X ) e. _V ) -> ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) )
27 fvresi
 |-  ( ( _I |` ( Base ` X ) ) e. ( ( Base ` X ) ^m ( Base ` X ) ) -> ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) = ( _I |` ( Base ` X ) ) )
28 21 26 27 3syl
 |-  ( ( ph /\ X e. B ) -> ( ( _I |` ( ( Base ` X ) ^m ( Base ` X ) ) ) ` ( _I |` ( Base ` X ) ) ) = ( _I |` ( Base ` X ) ) )
29 1 2 3 4 5 6 funcestrcsetclem1
 |-  ( ( ph /\ X e. B ) -> ( F ` X ) = ( Base ` X ) )
30 29 fveq2d
 |-  ( ( ph /\ X e. B ) -> ( ( Id ` S ) ` ( F ` X ) ) = ( ( Id ` S ) ` ( Base ` X ) ) )
31 eqid
 |-  ( Id ` S ) = ( Id ` S )
32 1 3 5 estrcbasbas
 |-  ( ( ph /\ X e. B ) -> ( Base ` X ) e. U )
33 2 31 12 32 setcid
 |-  ( ( ph /\ X e. B ) -> ( ( Id ` S ) ` ( Base ` X ) ) = ( _I |` ( Base ` X ) ) )
34 30 33 eqtr2d
 |-  ( ( ph /\ X e. B ) -> ( _I |` ( Base ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) )
35 18 28 34 3eqtrd
 |-  ( ( ph /\ X e. B ) -> ( ( X G X ) ` ( ( Id ` E ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) )