Metamath Proof Explorer


Theorem funcestrcsetclem7

Description: Lemma 7 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
Assertion funcestrcsetclem7 φXBXGXIdEX=IdSFX

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 eqid BaseX=BaseX
9 1 2 3 4 5 6 7 8 8 funcestrcsetclem5 φXBXBXGX=IBaseXBaseX
10 9 anabsan2 φXBXGX=IBaseXBaseX
11 eqid IdE=IdE
12 5 adantr φXBUWUni
13 1 5 estrcbas φU=BaseE
14 3 13 eqtr4id φB=U
15 14 eleq2d φXBXU
16 15 biimpa φXBXU
17 1 11 12 16 estrcid φXBIdEX=IBaseX
18 10 17 fveq12d φXBXGXIdEX=IBaseXBaseXIBaseX
19 fvex BaseXV
20 19 19 pm3.2i BaseXVBaseXV
21 20 a1i φXBBaseXVBaseXV
22 f1oi IBaseX:BaseX1-1 ontoBaseX
23 f1of IBaseX:BaseX1-1 ontoBaseXIBaseX:BaseXBaseX
24 22 23 ax-mp IBaseX:BaseXBaseX
25 elmapg BaseXVBaseXVIBaseXBaseXBaseXIBaseX:BaseXBaseX
26 24 25 mpbiri BaseXVBaseXVIBaseXBaseXBaseX
27 fvresi IBaseXBaseXBaseXIBaseXBaseXIBaseX=IBaseX
28 21 26 27 3syl φXBIBaseXBaseXIBaseX=IBaseX
29 1 2 3 4 5 6 funcestrcsetclem1 φXBFX=BaseX
30 29 fveq2d φXBIdSFX=IdSBaseX
31 eqid IdS=IdS
32 1 3 5 estrcbasbas φXBBaseXU
33 2 31 12 32 setcid φXBIdSBaseX=IBaseX
34 30 33 eqtr2d φXBIBaseX=IdSFX
35 18 28 34 3eqtrd φXBXGXIdEX=IdSFX