Metamath Proof Explorer


Theorem funcestrcsetclem1

Description: Lemma 1 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
Assertion funcestrcsetclem1 φ X B F X = Base X

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 6 adantr φ X B F = x B Base x
8 fveq2 x = X Base x = Base X
9 8 adantl φ X B x = X Base x = Base X
10 simpr φ X B X B
11 fvexd φ X B Base X V
12 7 9 10 11 fvmptd φ X B F X = Base X