Database
BASIC CATEGORY THEORY
Examples of categories
The category of extensible structures
funcestrcsetclem1
Next ⟩
funcestrcsetclem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcestrcsetclem1
Description:
Lemma 1 for
funcestrcsetc
.
(Contributed by
AV
, 22-Mar-2020)
Ref
Expression
Hypotheses
funcestrcsetc.e
⊢
E
=
ExtStrCat
⁡
U
funcestrcsetc.s
⊢
S
=
SetCat
⁡
U
funcestrcsetc.b
⊢
B
=
Base
E
funcestrcsetc.c
⊢
C
=
Base
S
funcestrcsetc.u
⊢
φ
→
U
∈
WUni
funcestrcsetc.f
⊢
φ
→
F
=
x
∈
B
⟼
Base
x
Assertion
funcestrcsetclem1
⊢
φ
∧
X
∈
B
→
F
⁡
X
=
Base
X
Proof
Step
Hyp
Ref
Expression
1
funcestrcsetc.e
⊢
E
=
ExtStrCat
⁡
U
2
funcestrcsetc.s
⊢
S
=
SetCat
⁡
U
3
funcestrcsetc.b
⊢
B
=
Base
E
4
funcestrcsetc.c
⊢
C
=
Base
S
5
funcestrcsetc.u
⊢
φ
→
U
∈
WUni
6
funcestrcsetc.f
⊢
φ
→
F
=
x
∈
B
⟼
Base
x
7
6
adantr
⊢
φ
∧
X
∈
B
→
F
=
x
∈
B
⟼
Base
x
8
fveq2
⊢
x
=
X
→
Base
x
=
Base
X
9
8
adantl
⊢
φ
∧
X
∈
B
∧
x
=
X
→
Base
x
=
Base
X
10
simpr
⊢
φ
∧
X
∈
B
→
X
∈
B
11
fvexd
⊢
φ
∧
X
∈
B
→
Base
X
∈
V
12
7
9
10
11
fvmptd
⊢
φ
∧
X
∈
B
→
F
⁡
X
=
Base
X