Metamath Proof Explorer


Theorem funcestrcsetclem1

Description: Lemma 1 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
Assertion funcestrcsetclem1 φXBFX=BaseX

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 6 adantr φXBF=xBBasex
8 fveq2 x=XBasex=BaseX
9 8 adantl φXBx=XBasex=BaseX
10 simpr φXBXB
11 fvexd φXBBaseXV
12 7 9 10 11 fvmptd φXBFX=BaseX