Metamath Proof Explorer


Theorem funcestrcsetclem2

Description: Lemma 2 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
Assertion funcestrcsetclem2 φXBFXU

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 1 2 3 4 5 6 funcestrcsetclem1 φXBFX=BaseX
8 1 3 5 estrcbasbas φXBBaseXU
9 7 8 eqeltrd φXBFXU