Metamath Proof Explorer


Theorem funcestrcsetclem2

Description: Lemma 2 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
Assertion funcestrcsetclem2 φ X B F X U

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 1 2 3 4 5 6 funcestrcsetclem1 φ X B F X = Base X
8 1 3 5 estrcbasbas φ X B Base X U
9 7 8 eqeltrd φ X B F X U