Database
BASIC CATEGORY THEORY
Examples of categories
The category of extensible structures
funcestrcsetclem3
Next ⟩
funcestrcsetclem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
funcestrcsetclem3
Description:
Lemma 3 for
funcestrcsetc
.
(Contributed by
AV
, 22-Mar-2020)
Ref
Expression
Hypotheses
funcestrcsetc.e
⊢
E
=
ExtStrCat
⁡
U
funcestrcsetc.s
⊢
S
=
SetCat
⁡
U
funcestrcsetc.b
⊢
B
=
Base
E
funcestrcsetc.c
⊢
C
=
Base
S
funcestrcsetc.u
⊢
φ
→
U
∈
WUni
funcestrcsetc.f
⊢
φ
→
F
=
x
∈
B
⟼
Base
x
Assertion
funcestrcsetclem3
⊢
φ
→
F
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
funcestrcsetc.e
⊢
E
=
ExtStrCat
⁡
U
2
funcestrcsetc.s
⊢
S
=
SetCat
⁡
U
3
funcestrcsetc.b
⊢
B
=
Base
E
4
funcestrcsetc.c
⊢
C
=
Base
S
5
funcestrcsetc.u
⊢
φ
→
U
∈
WUni
6
funcestrcsetc.f
⊢
φ
→
F
=
x
∈
B
⟼
Base
x
7
1
3
5
estrcbasbas
⊢
φ
∧
x
∈
B
→
Base
x
∈
U
8
2
5
setcbas
⊢
φ
→
U
=
Base
S
9
8
eqcomd
⊢
φ
→
Base
S
=
U
10
9
adantr
⊢
φ
∧
x
∈
B
→
Base
S
=
U
11
7
10
eleqtrrd
⊢
φ
∧
x
∈
B
→
Base
x
∈
Base
S
12
11
4
eleqtrrdi
⊢
φ
∧
x
∈
B
→
Base
x
∈
C
13
6
12
fmpt3d
⊢
φ
→
F
:
B
⟶
C