Metamath Proof Explorer


Theorem funcestrcsetclem3

Description: Lemma 3 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E = ExtStrCat U
funcestrcsetc.s S = SetCat U
funcestrcsetc.b B = Base E
funcestrcsetc.c C = Base S
funcestrcsetc.u φ U WUni
funcestrcsetc.f φ F = x B Base x
Assertion funcestrcsetclem3 φ F : B C

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E = ExtStrCat U
2 funcestrcsetc.s S = SetCat U
3 funcestrcsetc.b B = Base E
4 funcestrcsetc.c C = Base S
5 funcestrcsetc.u φ U WUni
6 funcestrcsetc.f φ F = x B Base x
7 1 3 5 estrcbasbas φ x B Base x U
8 2 5 setcbas φ U = Base S
9 8 eqcomd φ Base S = U
10 9 adantr φ x B Base S = U
11 7 10 eleqtrrd φ x B Base x Base S
12 11 4 eleqtrrdi φ x B Base x C
13 6 12 fmpt3d φ F : B C