Metamath Proof Explorer


Theorem funcestrcsetclem3

Description: Lemma 3 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
Assertion funcestrcsetclem3 ( 𝜑𝐹 : 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
2 funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
4 funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
5 funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
6 funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 1 3 5 estrcbasbas ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝑈 )
8 2 5 setcbas ( 𝜑𝑈 = ( Base ‘ 𝑆 ) )
9 8 eqcomd ( 𝜑 → ( Base ‘ 𝑆 ) = 𝑈 )
10 9 adantr ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑆 ) = 𝑈 )
11 7 10 eleqtrrd ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) )
12 11 4 eleqtrrdi ( ( 𝜑𝑥𝐵 ) → ( Base ‘ 𝑥 ) ∈ 𝐶 )
13 6 12 fmpt3d ( 𝜑𝐹 : 𝐵𝐶 )