Description: Lemma 2 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | ||
funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | ||
Assertion | funcestrcsetclem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
2 | funcestrcsetc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
3 | funcestrcsetc.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
4 | funcestrcsetc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
5 | funcestrcsetc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
6 | funcestrcsetc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) | |
7 | 1 2 3 4 5 6 | funcestrcsetclem1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
8 | 1 3 5 | estrcbasbas | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑋 ) ∈ 𝑈 ) |
9 | 7 8 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |