Metamath Proof Explorer


Theorem funcestrcsetclem2

Description: Lemma 2 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
Assertion funcestrcsetclem2 ( ( 𝜑𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e 𝐸 = ( ExtStrCat ‘ 𝑈 )
2 funcestrcsetc.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcestrcsetc.b 𝐵 = ( Base ‘ 𝐸 )
4 funcestrcsetc.c 𝐶 = ( Base ‘ 𝑆 )
5 funcestrcsetc.u ( 𝜑𝑈 ∈ WUni )
6 funcestrcsetc.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 1 2 3 4 5 6 funcestrcsetclem1 ( ( 𝜑𝑋𝐵 ) → ( 𝐹𝑋 ) = ( Base ‘ 𝑋 ) )
8 1 3 5 estrcbasbas ( ( 𝜑𝑋𝐵 ) → ( Base ‘ 𝑋 ) ∈ 𝑈 )
9 7 8 eqeltrd ( ( 𝜑𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝑈 )